29 resultados para transcription factor FlbB

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteins belonging to the NFAT (nuclear factor of activated T cells) family of transcription factors are expressed in most immune cell types, and play a central role in the transcription of cytokine genes, such as IL-2, IL-4, IL-5, IL-13, IFN-gamma, TNF-alpha, and GM-CSF. The activity of NFAT proteins is regulated by the calcium/calmodulin-dependent phosphatase calcineurin, a target for inhibition by CsA and FK506. Recently, two different groups have described that mice lacking the NFAT1 transcription factor show an enhanced immune response, with tendency towards the development of a late Th2-like response. This review evaluates the possible role of NFAT proteins in the Th2 immune response and in the eosinophil-mediated allergic response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exclusion of the transcription factor Max from the nucleus of retinal ganglion cells is an early, caspase-independent event of programmed cell death following damage to the optic axons. To test whether the loss of nuclear Max leads to a reduction in neuroprotection, we developed a procedure to overexpress Max protein in rat retinal tissue in vivo. A recombinant adeno-associated viral vector (rAAV) containing the max gene was constructed, and its efficiency was confirmed by transduction of HEK-293 cells. Retinal ganglion cells were accessed in vivo through intravitreal injections of the vector in rats. Overexpression of Max in ganglion cells was detected by immunohistochemistry at 2 weeks following rAAV injection. In retinal explants, the preparation of which causes damage to the optic axons, Max immunoreactivity was increased after 30 h in vitro, and correlated with the preservation of a healthy morphology in ganglion cells. The data show that the rAAV vector efficiently expresses Max in mammalian retinal ganglion cells, and support the hypothesis that the Max protein plays a protective role for retinal neurons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Common variants of the transcription factor 7-like 2 (TCF7L2) gene have been found to be associated with type 2 diabetes in different ethnic groups. The Japanese-Brazilian population has one of the highest prevalence rates of diabetes. Therefore, the aim of the present study was to assess whether two single-nucleotide polymorphisms (SNPs) of TCF7L2, rs7903146 and rs12255372, could predict the development of glucose intolerance in Japanese-Brazilians. In a population-based 7-year prospective study, we genotyped 222 individuals (72 males and 150 females, aged 56.2 ± 10.5 years) with normal glucose tolerance at baseline. In the study population, we found that the minor allele frequency was 0.05 for SNP rs7903146 and 0.03 for SNP rs12255372. No significant allele or genotype association with glucose intolerance incidence was found for either SNP. Haplotypes were constructed with these two SNPs and three haplotypes were defined: CG (frequency: 0.94), TT (frequency = 0.027) and TG (frequency = 0.026). None of the haplotypes provided evidence for association with the incidence of glucose intolerance. Despite no associations between incidence of glucose intolerance and SNPs of the TCF7L2 gene in Japanese-Brazilians, we found that carriers of the CT genotype for rs7903146 had significantly lower insulin levels 2 h after a 75-g glucose load than carriers of the CC genotype. In conclusion, in Japanese-Brazilians, a population with a high prevalence of type 2 diabetes, common TCF7L2 variants did not make major contributions to the incidence of glucose tolerance abnormalities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cocaine is a widely used drug and its abuse is associated with physical, psychiatric and social problems. Abnormalities in newborns have been demonstrated to be due to the toxic effects of cocaine during fetal development. The mechanism by which cocaine causes neurological damage is complex and involves interactions of the drug with several neurotransmitter systems, such as the increase of extracellular levels of dopamine and free radicals, and modulation of transcription factors. The aim of this review was to evaluate the importance of the dopaminergic system and the participation of inflammatory signaling in cocaine neurotoxicity. Our study showed that cocaine activates the transcription factors NF-κB and CREB, which regulate genes involved in cellular death. GBR 12909 (an inhibitor of dopamine reuptake), lidocaine (a local anesthetic), and dopamine did not activate NF-κB in the same way as cocaine. However, the attenuation of NF-κB activity after the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, suggests that the activation of NF-κB by cocaine is, at least partially, due to activation of D1 receptors. NF-κB seems to have a protective role in these cells because its inhibition increased cellular death caused by cocaine. The increase in BDNF (brain-derived neurotrophic factor) mRNA can also be related to the protective role of both CREB and NF-κB transcription factors. An understanding of the mechanisms by which cocaine induces cell death in the brain will contribute to the development of new therapies for drug abusers, which can help to slow down the progress of degenerative processes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The microenvironment of the tumor plays an important role in facilitating cancer progression and activating dormant cancer cells. Most tumors are infiltrated with inflammatory cells which secrete cytokines such as tumor necrosis factor-a (TNF-a). To evaluate the role of TNF-a in the development of cancer we studied its effects on cell migration with a migration assay. The migrating cell number in TNF-a -treated group is about 2-fold of that of the control group. Accordingly, the expression of E-cadherin was decreased and the expression of vimentin was increased upon TNF-a treatment. These results showed that TNF-a can promote epithelial-mesenchymal transition (EMT) of MCF-7 cells. Further, we found that the expression of Snail, an important transcription factor in EMT, was increased in this process, which is inhibited by the nuclear factor kappa B (NFkB) inhibitor aspirin while not affected by the reactive oxygen species (ROS) scavenger N-acetyl cysteine. Consistently, specific inhibition of NFkB by the mutant IkBa also blocked the TNF-a-induced upregulation of Snail promoter activity. Thus, the activation of NFkB, which causes an increase in the expression of the transcription factor Snail is essential in the TNF-a-induced EMT. ROS caused by TNF-a seemed to play a minor role in the TNF-a-induced EMT of MCF-7 cells, though ROS per se can promote EMT. These findings suggest that different mechanisms might be responsible for TNF-a - and ROS-induced EMT, indicating the need for different strategies for the prevention of tumor metastasis induced by different stimuli.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, biomarkers and transcriptional factor motifs were identified in order to investigate the etiology and phenotypic severity of Down syndrome. GSE 1281, GSE 1611, and GSE 5390 were downloaded from the gene expression ominibus (GEO). A robust multiarray analysis (RMA) algorithm was applied to detect differentially expressed genes (DEGs). In order to screen for biological pathways and to interrogate the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, the database for annotation, visualization, and integrated discovery (DAVID) was used to carry out a gene ontology (GO) function enrichment for DEGs. Finally, a transcriptional regulatory network was constructed, and a hypergeometric distribution test was applied to select for significantly enriched transcriptional factor motifs. CBR1, DYRK1A, HMGN1, ITSN1, RCAN1, SON, TMEM50B, and TTC3 were each up-regulated two-fold in Down syndrome samples compared to normal samples; of these, SON and TTC3 were newly reported. CBR1, DYRK1A, HMGN1, ITSN1, RCAN1, SON, TMEM50B, and TTC3 were located on human chromosome 21 (mouse chromosome 16). The DEGs were significantly enriched in macromolecular complex subunit organization and focal adhesion pathways. Eleven significantly enriched transcription factor motifs (PAX5, EGR1, XBP1, SREBP1, OLF1, MZF1, NFY, NFKAPPAB, MYCMAX, NFE2, and RP58) were identified. The DEGs and transcription factor motifs identified in our study provide biomarkers for the understanding of Down syndrome pathogenesis and progression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aspartyl proteases are a class of enzymes that include the yeast aspartyl proteases and secreted aspartyl protease (Sap) superfamilies. Several Sap superfamily members have been demonstrated or suggested as virulence factors in opportunistic pathogens of the genus Candida. Candida albicans, Candida tropicalis, Candida dubliniensis and Candida parapsilosis harbour 10, four, eight and three SAP genes, respectively. In this work, genome mining and phylogenetic analyses revealed the presence of new members of the Sap superfamily in C. tropicalis (8), Candida guilliermondii (8), C. parapsilosis(11) and Candida lusitaniae (3). A total of 12 Sap families, containing proteins with at least 50% similarity, were discovered in opportunistic, pathogenic Candida spp. In several Sap families, at least two subfamilies or orthologous groups were identified, each defined by > 90% sequence similitude, functional similarity and synteny among its members. No new members of previously described Sap families were found in a Candida spp. clinical strain collection; however, the universality of SAPT gene distribution among C. tropicalis strains was demonstrated. In addition, several features of opportunistic pathogenic Candida species, such as gene duplications and inversions, similitude, synteny, putative transcription factor binding sites and genome traits of SAP gene superfamily were described in a molecular evolutionary context.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objectives of this study were to determine low-P tolerance mechanisms in contrasting wheat genotypes and to evaluate the association of these mechanisms to differential gene expression. Wheat seedlings of cultivars Toropi (tolerant to low-P availability) and Anahuac (sensitive) were evaluated. Seedlings were hydroponically grown in the absence or presence of P (1.0 mmol L-1) during three different time periods: 24, 120 and 240 hours. Free phosphate (Pi) and total P contents were measured in shoots and roots. The experiment's design was in randomized blocks with three replicates, each formed by ten plants. The relative expression of genes encoding the malate transporter TaALMT1 and the transcription factor PTF1 was evaluated. Phosphorus starvation beyond ten days increased the expression of TaALMT1 only in 'Toropi'. PTF1's expression was early induced in both genotypes under P starvation, but remained significant after ten days only in 'Toropi'. Shoot Pi concentration in 'Toropi' was independent from P availability; under starvation, 'Toropi' favored the maintenance of shoot Pi concentration. The low-P tolerance of Toropi cultivar at initial growth stages is mainly due to its ability to maintain constant the Pi shoot level.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract: This study aimed to investigate a possible relationship between alveolar type II cells and the inflammatory response to infection with Leptospira spp., and thus comprise a further element that can be involved in the pathogenesis of lung injury in naturally infected pigs. The study group consisted of 73 adult pigs that were extensively reared and slaughtered in Teresina, Piauí state, and Timon, Maranhão state, Brazil. The diagnosis of leptospirosis was made using the microscopic agglutination test (MAT) aided by immunohistochemistry and polymerase chain reaction. The MAT registered the occurrence of anti-Leptospira antibodies in 10.96% (8/73) of the pigs. Immunohistochemistry allowed for the visualization of the Leptospira spp. antigen in the lungs of 87.67% (64/73) of the pigs. There was hyperplasia of bronchus-associated lymphoid tissue and circulatory changes, such as congestion of alveolar septa, parenchymal hemorrhage and edema within the alveoli. Lung inflammation was more intense (p = 0.0312) in infected animals, which also showed increased thickening of the alveolar septa (p = 0.0006). Evaluation of alveolar type II (ATII) cells using an anti-TTF-1 (Thyroid Transcription Factor-1) antibody showed that there were more immunostained cells in the non-infected pigs (53.8%) than in the infected animals (46.2%) and that there was an inverse correlation between TTF-1 positive cells and the inflammatory infiltrate. There was no amplification of Leptospira DNA in the lung samples, but leptospiral DNA amplification was observed in the kidneys. The results of this study showed that a relationship exists between a decrease in alveolar type II cells and a leptospire infection. Thus, this work points to the importance of studying the ATII cells as a potential marker of the level of lung innate immune response during leptospirosis in pigs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The RECK gene was initially isolated as a transformation suppressor gene encoding a novel membrane-anchored glycoprotein and later found to suppress tumor invasion and metastasis by regulating matrix metalloproteinase-9. Its expression is ubiquitous in normal tissues, but undetectable in many tumor cell lines and in fibroblastic lines transformed by various oncogenes. The RECK gene promoter has been cloned and characterized. One of the elements responsible for the oncogene-mediated downregulation of mouse RECK gene is the Sp1 site, where the Sp1 and Sp3 factors bind. Sp1 transcription factor family is involved in the basal level of promoter activity of many genes, as well as in dynamic regulation of gene expression; in a majority of cases as a positive regulator, or, as exemplified by the oncogene-mediated suppression of RECK gene expression, as a negative transcription regulator. The molecular mechanisms of the downregulation of mouse RECK gene and other tumor suppressor genes are just beginning to be uncovered. Understanding the regulation of these genes may help to develop strategies to restore their expression in tumor cells and, hence, suppress the cells' malignant behavior.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The threat of free radical damage is opposed by coordinated responses that modulate expression of sets of gene products. In mammalian cells, 12 proteins are induced by exposure to nitric oxide (NO) levels that are sub-toxic but exceed the level needed to activate guanylate cyclase. Heme oxygenase 1 (HO-1) synthesis increases substantially, due to a 30- to 70-fold increase in the level of HO-1 mRNA. HO-1 induction is cGMP-independent and occurs mainly through increased mRNA stability, which therefore indicates a new NO-signaling pathway. HO-1 induction contributes to dramatically increased NO resistance and, together with the other inducible functions, constitutes an adaptive resistance pathway that also defends against oxidants such as H2O2. In E. coli, an oxidative stress response, the soxRS regulon, is activated by direct exposure of E. coli to NO, or by NO generated in murine macrophages after phagocytosis of the bacteria. This response is governed by the SoxR protein, a homodimeric transcription factor (17-kDa subunits) containing [2Fe-2S] clusters essential for its activity. SoxR responds to superoxide stress through one-electron oxidation of the iron-sulfur centers, but such oxidation is not observed in reactions of NO with SoxR. Instead, NO nitrosylates the iron-sulfur centers of SoxR both in vitro and in intact cells, which yields a form of the protein with maximal transcriptional activity. Although nitrosylated SoxR is very stable in purified form, the spectroscopic signals for the nitrosylated iron-sulfur centers disappear rapidly in vivo, indicating an active process to reverse or eliminate them.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Y chromosome from spontaneously hypertensive rats (SHR) has a locus that raises blood pressure 20-25 mmHg. Associated with the SHR Y chromosome effect is a 4-week earlier pubertal rise of testosterone and dependence upon the androgen receptor for the full blood pressure effect. Several indices of enhanced sympathetic nervous system (SNS) activity are also associated with the SHR Y chromosome. Blockade of SNS outflow reduced the blood pressure effect. Salt sensitivity was increased by the Y chromosome as was salt appetite which was SNS dependent. A strong correlation (r = 0.57, P<0.001) was demonstrable between plasma testosterone and angiotensin II. Coronary collagen increased with blood pressure and the presence of the SHR Y chromosome. A promising candidate gene for the Y effect is the Sry locus (testis determining factor), a transcription factor which may also have other functions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The once obscure members of the 14-3-3 protein family play significant roles in the determination of cell fate. By inhibiting the pro-apoptotic BAD (Bcl-2-antagonist of cell death) and the transcription factor FKHRL-1, 14-3-3 displays important anti-apoptotic characteristics. To date, five points of interaction of 14-3-3 with the apoptotic machinery have been identified. How these interactions are regulated still remains a mystery.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several primary immunodeficiency diseases affecting the interleukin 12/interferon gamma (IFN-gamma) pathway have been identified, most of them characterized by recurrent and protracted infections produced by intracellular microorganisms, particularly by several species of mycobacteria. In the present study we analyzed the expression of IFN-gamma receptor (IFN-gammaR) and signal transducer and activator of transcription 1 (STAT-1) in 4 children with Mycobacterium tuberculosis infection of uncommon clinical presentation. These molecules were evaluated by flow cytometry and Western blotting in B cells transformed with Epstein-Barr virus and mutations were scanned by single-strand conformational polymorphisms and DNA sequencing. The expression of IFN-gammaR1 was normal in all 4 patients. The genetic analysis of IFN-gammaR1 and IFN-gammaR2 coding sequences did not reveal any mutation. The expression of the STAT-1 molecule was similar in patients and healthy controls; however, when the phosphorylation of this transcription factor in response to IFN-gamma activation was evaluated by Western blot, a significant lower signal was evident in one patient. These data indicate that there are no alterations in the expression or function of the IFN-gammaR chains in these patients. However, the low level of STAT-1 phosphorylation found in one of these patients might be explained by a defect in one of the molecules involved in the signal transduction pathway after IFN-gamma interacts with its receptor. In the other three patients the inability to eliminate the mycobacteria may be due to a defect in another effector mechanism of the mononuclear phagocytes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Activation of NFkappaB plays a pivotal role in many cellular processes such as inflammation, proliferation and apoptosis. In Drosophila, nuclear translocation of the NFkappaB-related transcription factor Dorsal is spatially regulated in order to subdivide the embryo into three primary dorsal-ventral (DV) domains: the ventral presumptive mesoderm, the lateral neuroectoderm and the dorsal ectoderm. Ventral activation of the Toll receptor induces degradation of the IkappaB-related inhibitor Cactus, liberating Dorsal for nuclear translocation. In addition, other pathways have been suggested to regulate Dorsal. Signaling through the maternal BMP member Decapentaplegic (Dpp) inhibits Dorsal translocation along a pathway parallel to and independent of Toll. In the present study, we show for the first time that the maternal JAK/STAT pathway also regulates embryonic DV patterning. Null alleles of loci coding for elements of the JAK/STAT pathway, hopscotch (hop), marelle (mrl) and zimp (zimp), modify zygotic expression along the DV axis. Genetic analysis suggests that the JAK kinase Hop, most similar to vertebrate JAK2, may modify signals downstream of Dpp. In addition, an activated form of Hop results in increased levels of Cactus and Dorsal proteins, modifying the Dorsal/Cactus ratio and consequently DV patterning. These results indicate that different maternal signals mediated by the Toll, BMP and JAK/STAT pathways may converge to regulate NFkappaB activity in Drosophila.