23 resultados para solvent-free synthesis
em Scielo Saúde Pública - SP
Resumo:
We describe the synthesis of 12 new ethyl and methyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives on solid supports with room temperature and microwave-assisted solvent-free procedures. Results show that solid supports have good catalytic activity in the formation of quinoxaline 1,4-di-N-oxide derivatives. We found that florisil and montmorillonite KSF and K10 could be used as new, easily available, inexpensive alternatives of catalysts. Additionally, room temperature and microwave-irradiation solvent-free synthesis was more efficient than a conventional procedure (Beirut reaction), reducing reaction time and increasing yield.
Resumo:
In this work we report the synthesis of sulfonamide derivatives using a conventional procedure and with solid supports, such as silica gel, florisil, alumina, 4Å molecular sieves, montmorillonite KSF, and montmorillonite K10 using solvent-free and microwave-assisted methods. Our results show that solid supports have a catalytic activity in the formation of sulfonamide derivatives. We found that florisil, montmorillonite KSF, and K10 could be used as inexpensive alternative catalysts that are easily separated from the reaction media. Additionally, solvent-free and microwave-assisted methods were more efficient in reducing reaction time and in increasing yield.
Resumo:
The bioactive 3,4-dihydropyrimidin-2(1H)-thione derivative known as Monastrol was synthesized under catalyzed and non-catalyzed conditions through the Biginelli multicomponent reaction under solvent-free conditions. The use of two Lewis acids (FeCl3 and CuCl2) and two Brønsted acids (HCl and CF3COOH) as catalysts improved the reaction yields of the transformation compared with the non-catalyzed reaction. The experiments investigated catalysis and its role, the importance of multicomponent reactions and their green features, and the application of these concepts to the synthesis of a biologically important structure.
Resumo:
The present contribution describes three different modern experiments for possible adoption in undergraduate organic chemistry laboratories. These are: 1. electrocatalytic hydrogenation of benzaldehyde to benzyl alcohol; 2. identification of three volatile components, obtained from pineapple fruit, by mass spectrometry and 3. microwave mediated fast synthesis of N-(p-chlorophenyl)phthalamic acid from phthalic anhydride and p-chloroaniline under solvent-free conditions. The experiments can be executed in a short period of time, putting the undergraduate student in contact with a variety of topics in organic chemistry and several techniques of analysis, showing multidisciplinarity in organic chemistry.
Resumo:
In this work, we report the Biginelli-type reaction between various aldehydes, acetophenones and urea systems in the presence of sulfonic acid functionalized silica (SBA-Pr-SO3H) under solvent-free conditions, which led to 4,6-diarylpyrimidin-2(1H)-ones derivatives. SBA-Pr-SO3H with a pore size of 6 nm was found to be an efficient heterogeneous solid acid catalyst for this reaction which led to high product yields, was environmentally benign with short reaction times and easy handling.
Resumo:
Monoacilglycerides and diacilglycerides are produced through lipase-catalyzed glycerolysis of soybean oil using Candida antarctica B in a solvent-free system. The reaction was carried out at a glycerol to triacylglycerol molar ratio of 8:1 with 2% of lipase. Acylglycerides, free fatty acids (FFA) and glycerol produced were separated employing the molecular distillation process. Starting from a product of enzymatic reaction 25.06% of triacylglycerols, 46.63% of diacylglycerides, 21.72% of monoacylglycerides, 5.38% of FFA and 1.21% of glycerol and after consecutively distillations, monoacylglycerides with 80% of purity was obtained and also oil with 54% of diacylglycerides to be used in human dietary.
Resumo:
Isoamyl butyrate production was investigated using free and immobilized lipases by esterification of butyric acid with isoamyl alcohol in a solvent-free system and in an organic media. Among the enzymes studied, Lipozyme TL IM was found to be the most active catalyst in n-hexane as a solvent. The effects of different solvents and the amount of water added on conversion rates were studied. A maximum conversion yield of 80% in n-hexano at 48 h was obtained under the following conditions: 3 g L-1 of Lipozyme TL IM, 30 ºC, 180 rpm of agitation, isoamyl alcohol to butyric acid molar ratio of 1:1 and acid substrate concentration of 0.06 M.
Resumo:
Esterification reactions of glycerol with lauric acid in solvent free system were carried out using lipases from several sources. All lipases were immobilized on polysiloxane-polyvinyl alcohol particles by covalent binding with high activity recovered. Among the tested enzymes, the Candida antarctica lipase allowed to attain the highest molar conversion (76%), giving similar proportions of monolaurin, dilaurin and low amount of trilaurin. To further improve the process, the Response Surface Methodology (RSM) was used and optima temperature and molar ratio glycerol to lauric acid were found to be 45 ºC and 5:1, respectively. Under these conditions, 31.35% of monolaurin concentrations were attained and this result was in close agreement with the statistical model prediction.
Resumo:
Recent advances for improving physicochemical and nutritional properties of lipids are reviewed, with emphasis on products attaining by biochemical processing of natural fats and oils. Enzymatic interesterification provides an important route to modify physical and nutritional properties of milkfat without generating trans isomers. This process makes use of lipases, a versatile class of enzyme that is able to perform efficiently the target modification in both solvent and solvent free systems. The present review covers important features of lipases, lipase-catalyzed interesterification reactions and their effects on the composition and texture of the resulting product.
Resumo:
A cell-free system from Plasmodium falciparum able to translate endogenous mRNA was used to determine the effect of artemisinin, chloroquine and primaquine on the protein synthesis mechanism of the parasite. The antimalarial drugs did not inhibit the incorporation of [³H] methionine into parasite proteins even at concentrations higher than the ones found to strongly inhibit the parasite growth. Results clearly indicate that these compounds do not have a direct effect on protein synthesis activity of P. falciparum coded by endogenous mRNA.
Resumo:
The synthesis of layered double hydroxides (LDHs) by hydrothermal-LDH reconstruction and coprecipitation methods is reviewed using a thermodynamic approach. A mixture model was used for the estimation of the thermodynamics of formation of LDHs. The synthesis and solubility of LDHs are discussed in terms of standard molar Gibbs free energy change of reaction. Data for numerous divalent and trivalent metals as well as for some monovalent and tetravalent metals that may be part of the LDH structure have been compiled. Good agreement is found between theoretical and experimental data. Diagrams and tables for the prediction of possible new LDH materials are provided.
Resumo:
The aim of this work was to gain knowledge of enzymatic processes for the synthesis fatty acid esters of sugar, with the objective to develop an enzymatic process for the preparation of non-toxic biodegradable surface-active agents derived entirely from renewable resources. A wide range of data were collected for reaction conditions involving different sugars (glucose, fructose and sucrose), fatty acids (oleic, palmitic, lauric), solvents (hexane, heptane and t-butanol) and different sources of lipases in both free and immobilized forms. As a solvent t-butanol provided the best conditions to create a catalytic liquid phase in which the reaction occurs. Sugars were preferentially esterified in the following order: fructose > glucose > sucrose, depending on the enzyme preparation. For fructose no influence was found concerning de acyl donor and similar rates were achieved for all tested fatty acids. Ester synthesis was maximized for substrates containing fructose, lauric or oleic acids, t-butanol and lipase from porcine pancreas immobilized on polysiloxane-polyvinyl alcohol particles. Under such conditions molar conversions were higher than 50%.
Resumo:
Sulfonamides obtained by reaction of 8-aminoquinoline with 4-nitrobenzenesulfonylchloride and 2,4,6-triisopropylbenzenesulfonyl chloride were used to synthesize coordination compounds with CuII and ZnII with a ML2 composition. Determination of the crystal structures of the resulting zinc and copper complexes by X-ray diffraction show a distorted tetrahedral environment for the [Cu(qnbsa)2], [Cu(qibsa)2] and [Zn(qibsa)2] complexes in which the sulfonamide group acts as a bidentate ligand through the nitrogen atoms from the sulfonamidate and quinoline groups. The complex [Zn(qnbsa)2] crystallizes with a water molecule from the solvent and the Zn is five-coordinated and shows a bipyramidal-trigonal geometry. The electrochemical and electronic spectroscopy properties of the copper complexes are also discussed.
Resumo:
The synthesis and characterization of asymmetric ultrafiltration membranes from recycled polyethylene terephthalate (PET) and polyvinylpyrrolidone (PVP) is reported. PET is currently used in many applications, including the manufacture of bottles and tableware. Monomer extraction from waste PET is expensive, and this process has not yet been successfully demonstrated on a viable scale. Hence, any method to recycle or regenerate PET once it has been used is of significant importance from scientific and environmental research viewpoints. Such a process would be a green alternative due to reduced raw monomer consumption and the additional benefit of reduced manufacturing costs. The membranes described here were prepared by a phase-inversion process, which involved casting a solution containing PET, m-cresol as solvent, and polyethylene glycol (PEG) of different molecular weights as additives. The membranes were characterized in terms of pure water permeability (PWP), molecular weight cut-off (MWCO), and flux and membrane morphology. The results show that the addition of PEG with high molecular weights leads to membranes with higher PWP. The presence of additives affects surface roughness and membrane morphology.
Resumo:
This study aims to synthesize and characterize organoclays developed from an Argentinian montmorillonite (Bent) using hexadecyltrimethylammonium bromide (HDTMA-Br) as the intercalation agent. Subsequently, an adsorption mechanism is proposed. The obtained organoclays were more hydrophobic than the starting clay. Surfactant molecules were adsorbed initially through cation exchange in sites placed in the interlayer space of the clay. Adsorption in such sites continued until the interlayer space was saturated. Depending on the surfactant loading introduced during the intercalation process, different organizations of surfactant in the interlayer were obtained. Further adsorption of surfactant occurred in the mesopores generated by tactoids in the "house of cards" organization. This process kept surfactant molecules relatively free and out of the interlayer space.