14 resultados para quantum molecular dynamics model

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study is to understand the structural flexibility and curvature of the E2 protein of human papillomavirus type 18 using molecular dynamics (6 ns). E2 is required for viral DNA replication and its disruption could be an anti-viral strategy. E2 is a dimer, with each monomer folding into a stable open-faced β-sandwich. We calculated the mobility of the E2 dimer and found that it was asymmetric. These different mobilities of E2 monomers suggest that drugs or vaccines could be targeted to the interface between the two monomers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Vashishta-Rahman effective interaction potential, based on the Pauling's concept of "ionic radii", has been successfully employed to investigate structural and dynamical properties of different classes of material. By celebrating Pauling's birth centenary, we review the building up of the Vashishta-Rahman potential and we present molecular-dynamics simulation results for structure and dynamics of superionic materials, chalcogenide glasses and metallic oxides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of open source benchmarks for computer performance analysis of personal computers with a focus on computational chemistry calculations is presented. The results returned by these tests are discussed and used to correlate with the actual performance of a set of computers available for research on two computing intensive fields of chemistry, quantum chemical and molecular simulation calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and hydration of the HNP-3 have been derived from molecular dynamics data using root mean square deviation, radial and energy distributions. Three antiparallel beta sheets were found to be preserved. 15 intramolecular hydrogen bonds were identified together with 36 hydrogen bonds on the backbone and 35 on the side chain atoms. From the point of view of the hydration dynamics, the analysis shows a high solvent accessibility of the monomer and attractive interactions with water molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In general, molecular modeling techniques applied in medicinal chemistry have been static and drug based. However the active site geometry and the intrinsic flexibility of both receptor and ligand are fundamental properties for molecular recognition and drug action. As a consequence, the use of dynamic models to describe the ligand-receptor complex is becoming a more common procedure. In this work we discuss the relevance of considering the receptor structure in medicinal chemistry studies as well as the flexibility of the ligand-receptor complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The triterpenoids oleanolic (OA) and ursolic (UA) acids show non-selective antiinflamatory activity in vitro for cyclooxygenase (COX) isoforms. 3D conformations of OA and UA, with three possible orientations (1, 1' and 2) in the active site of isoforms COX, obtained by docking, were submitted to molecular dynamics. The results show that orientation 2 of the OA in COX-2 is more favorable because orientation 1 moved away from the active site. The carboxylate group of OA interact by hydrogen bonds with Ser353 and with Phe357 and Leu359, mediated by water, while hydroxyl in C-3 interact by hydrogen bond, mediated by water, with Tyr385.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article reports on the design and characteristics of substrate mimetics in protease-catalyzed reactions. Firstly, the basis of protease-catalyzed peptide synthesis and the general advantages of substrate mimetics over common acyl donor components are described. The binding behavior of these artificial substrates and the mechanism of catalysis are further discussed on the basis of hydrolysis, acyl transfer, protein-ligand docking, and molecular dynamics studies on the trypsin model. The general validity of the substrate mimetic concept is illustrated by the expansion of this strategy to trypsin-like, glutamic acid-specific, and hydrophobic amino acid-specific proteases. Finally, opportunities for the combination of the substrate mimetic strategy with the chemical solid-phase peptide synthesis and the use of substrate mimetics for non-peptide organic amide synthesis are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reverse transcriptase (RT) is a multifunctional enzyme in the human immunodeficiency virus (HIV)-1 life cycle and represents a primary target for drug discovery efforts against HIV-1 infection. Two classes of RT inhibitors, the nucleoside RT inhibitors (NRTIs) and the nonnucleoside transcriptase inhibitors are prominently used in the highly active antiretroviral therapy in combination with other anti-HIV drugs. However, the rapid emergence of drug-resistant viral strains has limited the successful rate of the anti-HIV agents. Computational methods are a significant part of the drug design process and indispensable to study drug resistance. In this review, recent advances in computer-aided drug design for the rational design of new compounds against HIV-1 RT using methods such as molecular docking, molecular dynamics, free energy calculations, quantitative structure-activity relationships, pharmacophore modelling and absorption, distribution, metabolism, excretion and toxicity prediction are discussed. Successful applications of these methodologies are also highlighted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recentlly, we have proposed the representation of lanthanides within AM1 as sparkles for the purpose of obtaing ground state geometries of their complexes. We tested our quantum chemical sparkle model (SMLC/AM1) for the prediction of the crystallographic structure of complexes with coordination number nine, eight and seven. A technique is introduced for the theoretical prediction of eletronic spectra of the organic part of lanthanide complexes by replacing the metal ion by a point charge with the ligands held in their positions as determined by the SMLC/AM1, and by computing the theoretical spectra via the intermediate neglect of differential overlap/spectroscopic-configuration interaction (INDO/S-CI).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statistical mechanics Monte Carlo simulation is reviewed as a formalism to study thermodynamic properties of liquids. Considering the importance of free energy changes in chemical processes, the thermodynamic perturbation theory implemented in the Monte Carlo method is discussed. The representation of molecular interaction by the Lennard-Jones and Coulomb potential functions is also discussed. Charges derived from quantum molecular electrostatic potential are also discussed as an useful methodology to generate an adequate set of partial charges to be used in liquid simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we review the basic techniques of performance analysis within the UNIX environment that are relevant in computational chemistry, with particular emphasis on the execution profile using the gprof tool. Two case studies (in ab initio and molecular dynamics calculations) are presented in order to illustrate how execution profiling can be used to effectively identify bottlenecks and to guide source code optimization. Using these profiling and optimization techniques it was possible to obtain significant speedups (of up to 30%) in both cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational methods for the calculation of dynamical properties of fluids might consider the system as a continuum or as an assembly of molecules. Molecular dynamics (MD) simulation includes molecular resolution, whereas computational fluid dynamics (CFD) considers the fluid as a continuum. This work provides a review of hybrid methods MD/CFD recently proposed in the literature. Theoretical foundations, basic approaches of computational methods, and dynamical properties typically calculated by MD and CFD are first presented in order to appreciate the similarities and differences between these two methods. Then, methods for coupling MD and CFD, and applications of hybrid simulations MD/CFD, are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A software that includes both Stochastic and Molecular Dynamics procedures has been developed with the aim of visualizing the Stern-Volmer kinetic mechanism of dynamic luminescence quenching. The software allows the student to easily simulate and graphically visualize the molecular collisions, the molecular speed distributions, the luminescence decay curves, and the Stern-Volmer graphs. The software named "SternVolmer" is written for the FreeBASIC compiler and can be applied to dynamic systems where luminescent molecules, during their excited state lifetimes, are able to collide with quenching molecules (collisional quenching). The good agreement found between the simulations and the expected results shows that this software can be used as an effective teaching aid for the study of luminescence and kinetic decay of excited states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to monitor membrane dynamic changes in erythrocytes subjected to oxidative stress with hydrogen peroxide (H2O2). The lipid spin label, 5-doxyl stearic acid, responded to dramatic reductions in membrane fluidity, which was correlated with increases in the protein content of the membrane. Membrane rigidity, associated with the binding of hemoglobin (Hb) to the erythrocyte membrane, was also indicated by a spin-labeled maleimide, 5-MSL, covalently bound to the sulfhydryl groups of membrane proteins. At 2% hematocrit, these alterations in membrane occurred at very low concentrations of H2O2 (50 µM) after only 5 min of incubation at 37°C in azide phosphate buffer, pH 7.4. Lipid peroxidation, suggested by oxidative hemolysis and malondialdehyde formation, started at 300 µM H2O2 (for incubation of 3 h), which is a concentration about six times higher than those detected with the probes. Ascorbic acid and α-tocopherol protected the membrane against lipoperoxidation, but did not prevent the binding of proteins to the erythrocyte membrane. Moreover, the antioxidant (+)-catechin, which also failed to prevent the cross-linking of cytoskeletal proteins with Hb, was very effective in protecting erythrocyte ghosts from lipid peroxidation induced by the Fenton reaction. This study also showed that EPR spectroscopy can be useful to assess the molecular dynamics of red blood cell membranes in both the lipid and protein domains and examine oxidation processes in a system that is so vulnerable to oxidation.