110 resultados para proteins defects
em Scielo Saúde Pública - SP
Resumo:
Muscular dystrophies are a heterogeneous group of genetically determined progressive disorders of the muscle with a primary or predominant involvement of the pelvic or shoulder girdle musculature. The clinical course is highly variable, ranging from severe congenital forms with rapid progression to milder forms with later onset and a slower course. In recent years, several proteins from the sarcolemmal muscle membrane (dystrophin, sarcoglycans, dysferlin, caveolin-3), from the extracellular matrix (alpha2-laminin, collagen VI), from the sarcomere (telethonin, myotilin, titin, nebulin), from the muscle cytosol (calpain 3, TRIM32), from the nucleus (emerin, lamin A/C, survival motor neuron protein), and from the glycosylation pathway (fukutin, fukutin-related protein) have been identified. Mutations in their respective genes are responsible for different forms of neuromuscular diseases. Protein analysis using Western blotting or immunohistochemistry with specific antibodies is of the utmost importance for the differential diagnosis and elucidation of the physiopathology of each genetic disorder involved. Recent molecular studies have shown clinical inter- and intra-familial variability in several genetic disorders highlighting the importance of other factors in determining phenotypic expression and the role of possible modifying genes and protein interactions. Developmental studies can help elucidate the mechanism of normal muscle formation and thus muscle regeneration. In the last fifteen years, our research has focused on muscle protein expression, localization and possible interactions in patients affected by different forms of muscular dystrophies. The main objective of this review is to summarize the most recent findings in the field and our own contribution.
Resumo:
DNA double-strand breaks (DSBs) represent a major threat to the genomic stability of eukaryotic cells. DNA repair mechanisms such as non-homologous end joining (NHEJ) are responsible for the maintenance of eukaryotic genomes. Dysfunction of one or more of the many protein complexes that function in NHEJ can lead to sensitivity to DNA damaging agents, apoptosis, genomic instability, and severe combined immunodeficiency. One protein, Pso2p, was shown to participate in the repair of DSBs induced by DNA inter-strand cross-linking (ICL) agents such as cisplatin, nitrogen mustard or photo-activated bi-functional psoralens. The molecular function of Pso2p in DNA repair is unknown, but yeast and mammalian cell line mutants for PSO2 show the same cellular responses as strains with defects in NHEJ, e.g., sensitivity to ICLs and apoptosis. The Pso2p human homologue Artemis participates in V(D)J recombination. Mutations in Artemis induce a variety of immunological deficiencies, a predisposition to lymphomas, and an increase in chromosomal aberrations. In order to better understand the role of Pso2p in the repair of DSBs generated as repair intermediates of ICLs, an in silico approach was used to characterize the catalytic domain of Pso2p, which led to identification of novel Pso2p homologues in other organisms. Moreover, we found the catalytic core of Pso2p fused to different domains. In plants, a specific ATP-dependent DNA ligase I contains the catalytic core of Pso2p, constituting a new DNA ligase family, which was named LIG6. The possible functions of Pso2p/Artemis/Lig6p in NHEJ and V(D)J recombination and in other cellular metabolic reactions are discussed.
Resumo:
Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the transforming growth factor ß superfamily. Family members are expressed during limb development, endochondral ossification, early fracture, and cartilage repair. The activity of BMPs was first identified in the 1960s but the proteins responsible for bone induction were unknown until the purification and cloning of human BMPs in the 1980s. To date, about 15 BMP family members have been identified and characterized. The signal triggered by BMPs is transduced through serine/threonine kinase receptors, type I and II subtypes. Three type I receptors have been shown to bind BMP ligands, namely: type IA and IB BMP receptors and type IA activin receptors. BMPs seem to be involved in the regulation of cell proliferation, survival, differentiation and apoptosis, but their hallmark is their ability to induce bone, cartilage, ligament, and tendon formation at both heterotopic and orthotopic sites. This suggests that, in the future, they may play a major role in the treatment of bone diseases. Several animal studies have illustrated the potential of BMPs to enhance spinal fusion, repair critical-size defects, accelerate union, and heal articular cartilage lesions. Difficulties in producing and purifying BMPs from bone tissue have prompted the attempts made by several laboratories, including ours, to express these proteins in the recombinant form in heterologous systems. This review focuses on BMP structure, molecular mechanisms of action and significance and potential applications in medical, dental and veterinary practice for the treatment of cartilage and bone-related diseases.
Resumo:
Among the proposed treatments to repair lesions of degenerative joint disease (DJD), chondroprotective nutraceuticals composed by glucosamine and chondroitin sulfate are a non-invasive theraphy with properties that favors the health of the cartilage. Although used in human, it is also available for veterinary use with administration in the form of nutritional supplement independent of prescription, since they have registry only in the Inspection Service, which does not require safety and efficacy testing. The lack of such tests to prove efficacy and safety of veterinary medicines required by the Ministry of Agriculture and the lack of scientific studies proving its benefits raises doubts about the efficiency of the concentrations of such active substances. In this context, the objective of this study was to evaluate the efficacy of a veterinary chondroprotective nutraceutical based on chondroitin sulfate and glucosamine in the repair of osteochondral defects in lateral femoral condyle of 48 dogs, through clinical and radiographic analysis. The animals were divided into treatment group (TG) and control group (CG), so that only the TG received the nutraceutical every 24 hours at the rate recommended by the manufacturer. The results of the four treatment times (15, 30, 60 and 90 days) showed that the chondroprotective nutraceutical, in the rate, formulation and administration at the times used, did not improve clinical signs and radiologically did not influence in the repair process of the defects, since the treated and control groups showed similar radiographic findings at the end of the treatments.
Resumo:
A simplified methodology for the quantitative electroelution of proteins from polyacrylamide gels is described. After staining with Coomassie Brilliant Blue R 250, the identified bands are excised from the gel and the proteins eluted using a procedure developed for use in conventional tube gel electrophoresis equipment.
Resumo:
The expression of iron regulated proteins (IRPs) in vitro has been obtained in the past by adding iron chelators to the culture after bacterial growth, in the presence of an organic iron source. We have investigated aspects concerning full expression of the meningococcal IRPs during normal growth, in defined conditions using Catlin medium, Mueller Hinton and Tryptic Soy Broth (TSB). The expression of IRPs varied between different strains with respect to Ethylenediamine Di-ortho-Hidroxy-phenyl-acetic acid (EDDA) concentrations, and according to culture medium, and also between different lots of TSB. For each strain, a specific set of IRPs were expressed and higher EDDA concentrations, or addition of glucose, or use of different culture media did not resulted in a differential expression of IRPs. We were not able to grow N. meningitidis under normal growth conditions using Desferal. We looked for a good yield of outer membrane vesicles (OMVs) expressing IRPs in iron-deficient Catlin medium containing EDDA and Hemin. Culture for 32 h at 30ºC after growing for 16 h at 37ºC supported good bacterial growth. Bacterial lysis was noted after additional 24 h at 30ºC. Approximately 4 times more OMVs was recoverable from a culture supernatant after 24 h at 30ºC than from the cells after 16 h at 37ºC. The IRP were as well expressed in OMVs from culture supernatant obtained after 24 h at 30ºC as from the cells after 16 h at 37ºC.
Resumo:
Giardia duodenalis isolates from asymptomatic or symptomatic patients and from animals present similarities and differences in the protein composition, antigenic profile, pattern of proteases and isoenzymes, as well as in nucleic acids analysis. In the present overview, these differences and similarities are reviewed with emphasis in the host-parasite interplay and possible mechanisms of virulence of the protozoon.
Resumo:
In the past few years, induction of protective immunity to cutaneous leishmaniasis has been attempted by many researchers using a variety of antigenic preparations, such as living promastigotes or promastigote extracts, partially purified, or defined proteins. In this study, eleven proteins from Leishmania (Leishmania) amazonensis (LLa) with estimated molecular mass ranging from 97 to 13.5kDa were isolated by polyacrylamide gel electrophoresis and electro-elution. The proteins were associated as vaccine in different preparations with gp63 and BCG (Bacilli Calmette-Guérin). The antigenicity of these vaccines was measured by their ability to induce the production of IFN-g by lymphocyte from subjects vaccinated with Leishvacinâ . The immunogenicity was evaluated in vaccinated mice. C57BL/10 mice were vaccinated with three doses of each vaccine consisting of 30 mg of each protein at 15 days interval. One hundred mg of live BCG was only used in the first dose. Seven days after the last dose, they received a first challenge infection with 105 infective promastigotes and four months later, a second challenge was done. Two months after the second challenge, 42.86% of protection was obtained in the group of mice vaccinated with association of proteins of gp63+46+22kDa, gp63+13.5+25+42kDa, gp63+46+42kDa, gp63+66kDa, and gp63+97kDa; 57.14% of protection was demonstrated with gp63+46+97+13.5kDa, gp63+46+97kDa, gp63+46+33kDa, and 71.43% protection for gp63 plus all proteins. The vaccine of gp63+46+40kDa that did not protect the mice, despite the good specific stimulation of lymphocytes (LSI = 7.60) and 10.77UI/ml of IFN-g production. When crude extract of L. (L.) amazonensis was used with BCG a 57.14% of protection was found after the first challenge and 28.57% after the second, the same result was observed for gp63. The data obtained with the vaccines can suggest that the future vaccine probably have to contain, except the 40kDa, a cocktail of proteins that would protect mice against cutaneous leishmaniasis.
Resumo:
In the present study, we have analyzed by sodium docecyl sulphate - polyacrilamide gel electrophoresis (SDS-PAGE), immunoblotting and Concanavalin A blotting (Con A blotting) proteins of membrane fractions and soluble fractions obtained from Giardia duodenalis trophozoites of two axenic strains isolated in Brazil from a symptomatic (BTU-11) and an asymptomatic patient (BTU-10), as compared to the reference strain Portland 1. Both Brazilian strains showed a complex and homogeneous electrophoretic pattern of proteins, but some differences could be observed. Several glycoproteins were detected, particularly the proteins of 81, 72, 59 kDa and the protein of 62 kDa in the membrane proteins and cytosol, respectively. Many antigenic components were revealed by anti-Giardia rabbit IgG antibodies in the immunoblotting analysis. Among these components, the membrane protein of 32 kDa and the cytosol protein of 30 kDa could be related to giardin, as previously demonstrated.
Resumo:
Renal damage is an important cause of death in patients who have survived the early effects of severe crotalid envenomation. Extracellular matrix of renal tissue is altered by Crotalus toxin activities. The aim of this study was to describe how cytoskeletal proteins and basal membrane components undergo substantial alterations under the action of Crotalus vegrandis crude venom and its hemorrhagic fraction (Uracoina-1) in mice. To detect the proteins in question, the immunoperoxidase method with monoclonal and polyclonal antibodies was used. Cell types within renal lesions were characterized by phenotypic identification, by means of immunohistologic analysis of marker proteins using different primary antibodies against mesangial cells, endothelial cells, cytoskeletal proteins (intermediate filament), extracellular matrix and basal membranes. Samples for morphological study by standard procedures (biotin-streptavidin-peroxidase technique) using light microscopy were processed. Positive and negative controls for each antigen tested in the staining assay were included. After crude venom and hemorrhagic fraction inoculation of mice, the disappearance of cytoskeletal vimentin and desmin and collagen proteins in the kidney was observed. In extracellular matrix and basal membranes, collagen type IV from envenomed animals tends to disappear from 24 h to 120 h after venom injection.
Resumo:
Salivary gland proteins of the human malaria vector, Anopheles dirus B were determined and analyzed. The amount of salivary gland proteins in mosquitoes aged between 3 - 10 days was approximately 1.08 ± 0.04 µg/female and 0.1 ± 0.05 µg/male. The salivary glands of both sexes displayed the same morphological organization as that of other anopheline mosquitoes. In females, apyrase accumulated in the distal regions, whereas alpha-glucosidase was found in the proximal region of the lateral lobes. This differential distribution of the analyzed enzymes reflects specialization of different regions for sugar and blood feeding. SDS-PAGE analysis revealed that at least seven major proteins were found in the female salivary glands, of which each morphological region contained different major proteins. Similar electrophoretic protein profiles were detected comparing unfed and blood-fed mosquitoes, suggesting that there is no specific protein induced by blood. Two-dimensional polyacrylamide gel analysis showed the most abundant salivary gland protein, with a molecular mass of approximately 35 kilodaltons and an isoelectric point of approximately 4.0. These results provide basic information that would lead to further study on the role of salivary proteins of An. dirus B in disease transmission and hematophagy.
Resumo:
This report describes a preliminary characterization of proteolytic activity of proteins isolated from lysate of Giardia trophozoites of an axenic Brazilian strain. Fractions obtained by high-performance liquid chromatography (FPLC) were tested in SDS-polyacrylamide gel for the protein profiles, and the proteases activity was analyzed using gelatin impregnated SDS-PAGE. The proteases characterization was based on inhibition assays employing synthetic inhibitors for cysteine (E-64, IAA), serine (PMSF, TPCK, TLCK, and elastatinal), metalo (EDTA) and aspartic (pepstatin) proteases. Among thirty eluted fractions, polypeptide bands were observed in eight of them, however, proteolytic activity was detected in four ones (F23, F24, F25 and F26). Protein profiles of these fractions showed a banding pattern composed by few bands distributed in the migration region of 45 to < 18 kDa. The zymograms revealed proteolytic activity in all the four fractions assayed, mainly distributed in the migration region of 62 to 35 kDa. Among the profiles, the main pronounced zones of proteolysis were distinguished at 62, 55, 53, 50, 46 and 40 kDa. In inhibition assays, the protease activities were significantly inhibited by cysteine (E-64) and serine proteases (TPCK, TLCK and elastatinal) inhibitors. Gels incubated with other cysteine and serine protease inhibitors, IAA and PMSF, respectively, showed a decrease in the intensity of hydrolysis zones. Indeed, in the assays with the inhibitors EDTA for metalloproteases and pepstatin for aspartic proteases, none inhibition was detected against the substrate. These observations are relevants, especially if we consider that to define the real role of the proteases in host-parasite interaction, the purification of these enzymes for detailed studies may be warranted.
Resumo:
Genetic diversity and differentiation, inferred by typing the polymorphic genes coding for the merozoite surface proteins 1 (Msp-1) and 2 (Msp-2), were compared for 345 isolates belonging to seven Plasmodium falciparum populations from three continents. Both loci yielded similar estimates of genetic diversity for each population, but rather different patterns of between-population differentiation, suggesting that natural selection on these loci, rather than the transmission dynamics of P. falciparum, determines the variation in allele frequencies among populations.
Resumo:
Immunogenic proteins from nonliving promastigote polyvalent Leishmania vaccine against American tegumentary leishmaniasis (Leishvacin®), produced by Biobrás (Biochemistry of Brazil ), Montes Claros, State of Minas Gerais, Brazil, were identified and purified by polyacrylamide electrophoresis gel and electroelution. C57BL/10 mice were vaccinated with proteins with estimated molecular weights of 42, 46, 63, 66, 73, 87, 97, and 160kDa in three doses of 30µg of each protein at 15-day intervals combined with 250µg of Corynebacterium parvum followed by a challenge infection with 10(5) infective promastigotes from Leishmania (Leishmania) amazonensis. The ability of these proteins to induce immune response and protection was analyzed. No statistical difference was observed in the level of IFN-g induced by proteins in vaccinated groups in comparison with control groups. Six months after challenge infection, protection levels of 28.57; 42.86; 57.14; 42.86; 42.86, 57.14; 42.86 and 57.14% were demonstrated for each purified protein.
Resumo:
This study evaluated serum protein fractions, HDL-cholesterol, total immunoglobulin G and total immunoglobulin E levels in patients with acute and chronic paracoccidioidomycosis, by means of electrophoresis, enzymatic reaction and immunoenzymatic assay. The results demonstrated elevated levels of total immunoglobulin G, total immunoglobulin E, alpha-2 and gamma-globulins, which were more evident in acute than in chronic PCM, but no increase in HDL-cholesterol levels. There was a correlation between the levels of total immunoglobulin E and gamma-globulins and the alpha-2 and beta-globulin fractions in the acute form and between beta and gamma-globulins in both the acute and the chronic form. In conclusion, changes in total immunoglobulin G and immunoglobulin E levels and in the electrophoretic profile may be important markers for the prognosis and therapeutic follow-up of PCM cases, especially because protein electrophoresis is a simple laboratory test that can be applied when specific PCM serological tests are not available. In addition, levels of the gamma-globulin fraction greater than 2.0g/dl may suggest that the patient is developing a more severe form of PCM.