17 resultados para poly-3-hydroxybutyrate
em Scielo Saúde Pública - SP
Resumo:
Development and selection of an ideal scaffold is of importance for tissue engineering. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) is a biocompatible bioresorbable copolymer that belongs to the polyhydroxyalkanoate family. Because of its good biocompatibility, PHBHHx has been widely used as a cell scaffold for tissue engineering. This review focuses on the utilization of PHBHHx-based scaffolds in tissue engineering. Advances in the preparation, modification, and application of PHBHHx scaffolds are discussed.
Resumo:
Polyhydroxyalkanoates (PHAs) are carbon and energy storage materials that are accumulated as intracellular granules in a variety of microorganisms during unbalanced growth. PHAs have drawn attention due to their properties similar to conventional plastics and complete biodegradability. They can be used for food and cosmetics packaging, and in medicine and agriculture. However, their applicability is reduced because of their high production cost compared to conventional plastics. An overview on production strategies of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) aiming at reducing the production costs is presented.
Resumo:
Poly (3-hydroxybutyrate) (P(3HB)) is a biopolymer, completely biodegradable, which has similar properties to fuel-based polymers. However to make it economically competitive it is necessary the study of cheap sources of substrate. The influence of hydrolyzed rice starch supplemented with soybean oil at different temperatures (30, 35 and 40 °C) was studied in the production of P(3HB) by C. necator. The percentage of P(3HB) produced in the cultures at 30, 35 °C was 30, 39% and 35, 43% without and with supplementation of oil, respectively. The culture at 40 °C showed no production phase due to a possible oxygen limitation. These results demonstrate that hydrolyzed rice starch supplemented with soybean oil increases the yield of P(3HB) and temperature of 35 ºC is the most favorable for biopolymer production.
Resumo:
Poly(3-hydroxybutyrate), PHB, is a polymer with broad potential applications because of its biodegradability and biocompatibility. However, its high crystallinity is a limiting factor for many applications. To overcome this drawback, one strategy currently employed involves the reduction of the molecular weight of PHB with the concomitant formation of end-functionalized chains, such as those obtained via glycolysis. The glycolysis of PHB can be catalyzed by acid, base, or organometallic compounds. However, to our knowledge, there are no reports regarding PHB glycolysis catalyzed enzymatically. Among the major types of enzymes used in biocatalysis, the lipases stand out because they have the ability to catalyze reactions in both aqueous and organic media. Thus, in this study, we performed the enzymatic glycolysis of PHB using the lipase Amano PS (Pseudomonas cepacia) with ethane-1,2-diol (ethylene glycol) as the functionalizing agent. The results indicated that the glycolysis was successful and afforded hydroxyl-terminated oligomeric PHB polyols. Nuclear magnetic resonance spectra of the products showed characteristic signals for the terminal hydroxyl groups of the polyols, while thermogravimetric and differential scanning calorimetry analyses confirmed an increase in the thermal stability and a decrease in the crystallinity of the polyols compared with the starting PHB polymer, which were both attributed to the reduction in the molecular weight due to glycolysis.
Resumo:
The environmental impact of plastic waste has attracted worldwide attention. Amid the current context of increasing concern for the environment, biodegradable plastics have been widely studied as a replacement for synthetic plastics. Poly(3-hydroxybutyrate) (P(3HB)) is a biopolymer stored as an intracellular energy and reserve source in many microorganisms. Because it is an intracellular product, P(3HB) must be extracted from the cells at the end of the culture. The purpose of this study was to investigate the effect of extraction time, heating temperature, first standing time (after filtration and extraction), second standing time (after P(3HB) precipitation) and solvent amount, during the process of extracting P(3HB) from Cupriavidus necator DSM 545, using propylene carbonate as solvent. The extraction kinetic of P(3HB) with propylene carbonate from thermally treated biomass was evaluated at different temperatures. The physical properties of the P(3HB) obtained were also evaluated. In this case, P(3HB) obtained at optimal conditions of recovery (98%) and purity (99%) was used. Results showed that temperature was the most important factor in these responses for the range of values studied (110-150 ºC).
Resumo:
The construction of a temperature controllable spectroelectrochemical cell is described. Its use in the analysis of the thermodynamic and structural parameters of the electrochromic process of poly(3-methyl thiophene) in the temperature range between -40ºC and 60ºC is given as an example of application.
Resumo:
In this technical note, we describe the construction of a low-cost computer controlled device for layer-by-layer film fabrication. The software allows to control multiple material deposition, washing and drying steps and the time for each operation. To test the device, we produced and characterized self-assembled films of conductive polymers by alternating poly(o-methoxyaniline) (POMA) and poly(3-thiophene acetic acid) (PTAA) via the layer-by-layer technique.
Resumo:
Automatic flow procedures based on the multicommutation concept, dedicated to the determination of 3-hydroxybutyrate, glucose and cholesterol are proposed. The enzymes were immobilized on glass beads and packed into mini-columns that were coupled to a flow system. Sampling throughputs of 55, 40 and 40 determinations per hour, linear response from 10 to 150, 50 to 600, 25 to 125 mg L-1, detection limits of 1.5, 14 and 4 mg L-1 and relative standard deviations of 1, 2 and 2% for 3-hydroxybutyrate, glucose and cholesterol, respectively, were achieved.
Resumo:
This work deals with the biodegradation of blends of poly(beta-hydroxybutyrate)/starch and poly(beta-hydroxybutyrate-co-hydroxyvalerate)/starch. The blends were obtained by evaporation of the solvent in the mixture of the polymers in chloroform. Tests were carried out in presence of micro-organisms which acted as biodegradation agents. The blends were consumed as carbon substrate and the production of CO2 was evaluated in the process. In addition, the polyesters' mechanical properties were reduced by the incorporation of starch in its structure. (¹H) NMR and infrared spectroscopy detected some characteristic polyester degradation groups in the polyesters' chemical structure, thus confirming the alteration suffered by it.
Resumo:
Vero cells, a cell line established from the kidney of the African green monkey (Cercopithecus aethiops), were cultured in F-10 Ham medium supplemented with 10% fetal calf serum at 37°C on membranes of poly(L-lactic acid) (PLLA), poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and their blends in different proportions (100/0, 60/40, 50/50, 40/60, and 0/100). The present study evaluated morphology of cells grown on different polymeric substrates after 24 h of culture by scanning electron microscopy. Cell adhesion was also analyzed after 2 h of inoculation. For cell growth evaluation, the cells were maintained in culture for 48, 120, 240, and 360 h. For cytochemical study, the cells were cultured for 120 or 240 h, fixed, processed for histological analysis, and stained with Toluidine blue, pH 4.0, and Xylidine ponceau, pH 2.5. Our results showed that cell adhesion was better when 60/40 and 50/50 blends were used although cells were able to grow and proliferate on all blends tested. When using PLLA/PHBV (50/50) slightly flattened cells were observed on porous and smooth areas. PLLA/PHBV (40/60) blends presented flattened cells on smooth areas. PLLA/PHBV (0/100), which presented no pores, also supported spreading cells interconnected by thin filaments. Histological sections showed that cells grew as a confluent monolayer on different substrates. Cytochemical analysis showed basophilic cells, indicating a large amount of RNA and proteins. Hence, we detected changes in cell morphology induced by alterations in blend proportions. This suggests that the cells changed their differentiation pattern when on various PLLA/PHBV blend surfaces.
Resumo:
The great expansion in the number of genome sequencing projects has revealed the importance of computational methods to speed up the characterization of unknown genes. These studies have been improved by the use of three dimensional information from the predicted proteins generated by molecular modeling techniques. In this work, we disclose the structure-function relationship of a gene product from Leishmania amazonensis by applying molecular modeling and bioinformatics techniques. The analyzed sequence encodes a 159 aminoacids polypeptide (estimated 18 kDa) and was denoted LaPABP for its high homology with poly-A binding proteins from trypanosomatids. The domain structure, clustering analysis and a three dimensional model of LaPABP, basically obtained by homology modeling on the structure of the human poly-A binding protein, are described. Based on the analysis of the electrostatic potential mapped on the model's surface and conservation of intramolecular contacts responsible for folding stabilization we hypothesize that this protein may have less avidity to RNA than it's L. major counterpart but still account for a significant functional activity in the parasite. The model obtained will help in the design of mutagenesis experiments aimed to elucidate the mechanism of gene expression in trypanosomatids and serve as a starting point for its exploration as a potential source of targets for a rational chemotherapy.
Resumo:
Recent work has demonstrated that hyperglycemia-induced overproduction of superoxide by the mitochondrial electron-transport chain triggers several pathways of injury [(protein kinase C (PKC), hexosamine and polyol pathway fluxes, advanced glycation end product formation (AGE)] involved in the pathogenesis of diabetic complications by inhibiting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. Increased oxidative and nitrosative stress activates the nuclear enzyme, poly(ADP-ribose) polymerase-1 (PARP). PARP activation, on one hand, depletes its substrate, NAD+, slowing the rate of glycolysis, electron transport and ATP formation. On the other hand, PARP activation results in inhibition of GAPDH by poly-ADP-ribosylation. These processes result in acute endothelial dysfunction in diabetic blood vessels, which importantly contributes to the development of various diabetic complications. Accordingly, hyperglycemia-induced activation of PKC and AGE formation are prevented by inhibition of PARP activity. Furthermore, inhibition of PARP protects against diabetic cardiovascular dysfunction in rodent models of cardiomyopathy, nephropathy, neuropathy, and retinopathy. PARP activation is also present in microvasculature of human diabetic subjects. The present review focuses on the role of PARP in diabetic complications and emphasizes the therapeutic potential of PARP inhibition in the prevention or reversal of diabetic complications.
Resumo:
The construction and analytical evaluation of a coated graphite-epoxy electrode sensitive to the zinc-1,10-phenantroline complex based on the [Zn(fen)3][tetrakis(4-chlorophenyl)borate]2 incorporated into a poly(vinylchloride) (PVC) matrix are described. A thin membrane film of this ion-pair, dibutylphthalate (DBPh) and PVC were deposited directly onto an electrically conductive graphite-epoxy support located inside a Perspex® tube. The best PVC polymeric membrane contains 65% (m/m) DBPh, 30% (m/m) PVC and 5% (m/m) of the ion-pair. This electrode shows a response of 19.5 mV dec-1 over the zinc(II) concentration range of 1.0 x 10-5 to 1.0 x 10-3 mol L-1 in 1,10-phenantroline medium, at pH 6.0. The response time was less than 20 seconds and the lifetime of this electrode was more than four months (over 1200 determinations by each polymeric membrane). It was successfully used as an indicator electrode in the potentiometric precipitation titration of zinc(II) ions.
Resumo:
This paper reports the use of an electrode modified with poly(o-methoxyaniline) for detecting lithium ions. These ions are present in drugs used for treating bipolar disorder and that requires periodical monitoring of the concentration of lithium in blood serum. Poly(o-methoxyaniline) was obtained electrochemically by cyclic voltammetry on the surface of a gold electrode. The results showed that the electrode modified with a conducting polymer responded to lithium ions in the concentration range of 1 x 10-5 to 1 x 10-4 mol L-1 . The results also confirmed that the performance of the modified electrode was comparable to that of the standard method (atomic emission spectrophotometry).
Resumo:
This study aims to prepare biodegradable films from cassava starch, poly (butylene adipate-co-terephthalate) (PBAT), and montmorillonite (MMT) using blow-extrusion process and analyze the effects of different types and concentrations of MMT on the microstructure, physicochemical, and mechanical properties of the resulting films. The films were produced by blending 30% of PBAT with glycerol (17.5%), starch (49.0-52.5%), and four different types of montmorillonite (Cloisite® Na+, 10A, 15A, and 30B) at two different concentrations (1.75% and 3.5%). All the films prepared in this study showed an increase in the basal spacing of MMT layers. In particular, the films with 10A and 30B showed the highest increase in intercalation basal spacing, suggesting the formation of intercalated composites. The addition of nanoclays decreased the elongation of films. The addition of Cloisite® 10A resulted in films with the lowest WVP values and the highest stability to water adsorption under different RH conditions.