21 resultados para mass transfer
em Scielo Saúde Pública - SP
Resumo:
In this article, a methodology is used for the simultaneous determination of the effective diffusivity and the convective mass transfer coefficient in porous solids, which can be considered as an infinite cylinder during drying. Two models are used for optimization and drying simulation: model 1 (constant volume and diffusivity, with equilibrium boundary condition), and model 2 (constant volume and diffusivity with convective boundary condition). Optimization algorithms based on the inverse method were coupled to the analytical solutions, and these solutions can be adjusted to experimental data of the drying kinetics. An application of optimization methodology was made to describe the drying kinetics of whole bananas, using experimental data available in the literature. The statistical indicators enable to affirm that the solution of diffusion equation with convective boundary condition generates results superior than those with the equilibrium boundary condition.
Resumo:
This paper presents the experimental characterization of hydrodynamics and gas-liquid mass transfer in a three-phase fluidized bed containing polystyrene and nylon particles. The influence of gas and liquid velocities on phase holdups and volumetric gas-liquid mass transfer coefficient was investigated for flow conditions similar to those applied in biotechnological process. The phase holdups were obtained by the pressure profile technique. The volumetric gas-liquid mass transfer coefficient was obtained adjusting the experimental concentration profiles of dissolved oxygen in the liquid phase with the predictions of the axial dispersion model. According to experimental results the liquid holdup increases with the gas velocity, whereas the solid holdup decreases. The gas holdup increases significantly with the increase in gas velocity, and it shows for the three-phase fluidized bed comparable values or larger than those of bubble column. The volumetric gas-liquid mass transfer coefficient increases significantly with an increase in the air velocity for both bubble column and fluidized beds. In addition, in the operational condition of high liquid velocity, the presence of low-density particles in the bed increased the gas-liquid mass transfer, and thus the volumetric mass transfer coefficient values obtained in the fluidized bed were comparable or larger than those of bubble column.
Resumo:
The legal Pantanal caiman (Caiman crocodilus yacare) farming, in Brazil, has been stimulated and among meat preservation techniques the salting process is a relatively simple and low-cost method. The objective of this work was to study the sodium chloride diffusion kinetics in farmed caiman muscle during salting. Limited volumes of brine were employed, with salting essays carried at 3, 4 and 5 brine/muscle ratios, at 15%, 20% and 25% w/w brine concentrations, and brine temperatures of 10, 15 and 20ºC. The analytical solution of second Fick's law considering one-dimensional diffusion through an infinite slab in contact with a well-stirred solution of limited volume was used to calculate effective salt diffusion coefficients and to predict the sodium chloride content in the fillets. A good agreement was obtained between the considered analytical model and experimental data. Salt diffusivities in fillets were found to be in the range of 0.47x10-10 to 9.62x10-10 m²/s.
Resumo:
This paper presents some results that may be used as previous considerations to a hydrogen peroxide electrogeneration process design. A kinetic study of oxygen dissolution in aqueous solution is carried out and rate constants for oxygen dissolution are calculated. Voltammetric experiments on vitreous carbon cathode shown that the low saturation concentration drives the oxygen reduction process to a mass transfer controlled process which exhibits low values of limiting currents. Results have shown that the hydrogen peroxide formation and its decomposition to water are separated by 400 mV on the vitreous carbon surface. Diffusion coefficients for oxygen and hydrogen peroxide are calculated using data taken from Levich and Tafel plots. In a series of bulk electrolysis experiments hydrogen peroxide was electrogenerated at several potential values, and concentration profiles as a function of the electrical charged passed were obtained. Data shown that, since limiting current plateaus are poorly defined onto reticulated vitreous carbon, cathodic efficiency may be a good criterion for choosing the potential value in which hydrogen peroxide electrogeneration should be carried out.
Resumo:
The pollutant transference among reservoirs atmosphere-hydrosphere, relevant to the atmospheric chemistry, depends upon scavenging coefficient (Λ) calculus, which depends on the raindrop size distribution as well as on the rainfall systems, both different to each locality. In this work, the Λ calculus will be evaluated to gas SO2 and particulate matter fine and coarse among five sites in Germany and two in Brazil. The results show three possible classifications in function of Λ, comparable to literature, however with a greater range due to the differences of rainfall system sites. This preliminary study supports future researches
Resumo:
In present work, we analyzed the copper electrodeposition onto GCE (System I) and HOPGE (System II) from perchlorate solutions. The current density transients obtained from system I and II were well described through a kinetic mechanism that involves four different contributions: (a) a Langmuir type adsorption process, b) an electron transfer from Cu2+→Cu+, (c) a 3D nucleation limited by a mass transfer reaction and (d) a proton reduction process. It was observed that the values of the nucleation rate, the number of active nucleation sites were increased with the overpotential and they are bigger onto GCE in comparison with HOPGE.
Resumo:
The aim of this study was to explain in detail the mathematical methods used to deal with diffusion equations, mainly for students and researchers interested in electrochemistry and related areas. Emphasis was placed on the deduction and resolution of diffusion equations, as well as addressing cartesian, spherical and cylindrical coordinates. Different aspects of mass transfer processes were discussed including the importance of the resolution of Fick's laws equations to understand and derive parameters of the electroactive species (e.g., diffusion coefficients, formal electrode potentials) from the electrochemical techniques. As an example, the resolution of diffusion equations for a reversible reduction process of soluble oxidized species was presented for the chronopotentiometry technique. This study is envisaged to broaden the understanding of these frequently used methods, in which mathematical deductions are not always completely understood.
Resumo:
Surface area (SA) of poultry is an important parameter for heat and mass transfer calculations. Optical approaches, such as the moiré technique (MT), are non-destructive, result in accuracy and speed gains, and preserve the object integrity. The objective of this research was to develop and validate a new protocol for estimating the surface area (SA) of broiler chickens based on the MT. Sixty-six Ross breed broiler chickens (twenty-seven male, thirty-nine female, ages spanning all growth phases) were used in this study. The dimensions (length, width and height) and body mass of randomly selected broiler chickens were evaluated in the laboratory. Chickens were illuminated by a light source, and grids were projected onto the chickens to allow their shape to be determined and recorded. Next, the skin and feathers of the chickens were removed to allow SA to be determined by conventional means. These measurements were then used for calibration and validation. The MT for image analysis was a reliable means of evaluating the three-dimensional shape and SA of broiler chickens. This technique, which is neither invasive nor destructive, is a good alternative to the conventional destructive methods.
Resumo:
In the forced-air cooling process of fruits occurs, besides the convective heat transfer, the mass transfer by evaporation. The energy need in the evaporation is taken from fruit that has its temperature lowered. In this study it has been proposed the use of empirical correlations for calculating the convective heat transfer coefficient as a function of surface temperature of the strawberry during the cooling process. The aim of this variation of the convective coefficient is to compensate the effect of evaporation in the heat transfer process. Linear and exponential correlations are tested, both with two adjustable parameters. The simulations are performed using experimental conditions reported in the literature for the cooling of strawberries. The results confirm the suitability of the proposed methodology.
Resumo:
ABSTRACT Total Ammoniacal Nitrogen - TAN (NH3 + NH4+) in wastewaters cause environmental degradation concerns due to their negative impacts on air, soil and water. Several technologies are available for TAN removal from the wastewaters. One emerging technology is the use of hydrophobic membrane as non-destructive NH3 extraction. In this paper the authors discuss the uses of gas permeable membrane (GPM) and its physicochemical characteristics that influence gas mass transfer rate, diffusion and recovery mechanisms of NH3 from liquid sources (e.g. animal wastewater). Several aspects of NH3 extraction from liquid manure and other TAN generation sources using GPM technology as well as its applicability for NH3 mitigation from liquid effluents and possible recovery as a nutrient for plant growth are also discussed in this review.
Resumo:
The effective diffusivity of clove essential oil in subcritical liquid CO2 was estimated. The experimental apparatus employed was a fixed-bed extractor. The fixed bed was formed with grounded (mesh -32 + 65) and compacted clove buds which were considered a solid element. The effective diffusion coefficient was evaluated by fitting the experimental concentration profile to the unsteady state mass balance equation for unidirectional diffusion in a finite solid medium. The diffusion coefficient was related to the concentration of oil in the solid by an exponential function. The estimated values of the effective diffusion coefficient varied from 3.64 to 5.22x10-10 m2/s. The average relative errors were lower than 3.1%.
Resumo:
The aim of this work was to evaluate the osmotic dehydration of sweet potato (Ipomoea batatas) using hypertonic sucrose solutions, with or without NaCl, at three different concentrations, at 40 °C. Highest water losses were obtained when the mixture of sucrose and NaCl was used. The addition of NaCl to osmotic solutions increases the driving force of the process and it is verified that the osmotic dehydration process is mainly influenced by changes in NaCl concentration, but the positive effect of the salt-sucrose interaction on soluble solids also determined the decrease of solid gain when solutes were at maximum concentrations. Mass transfer kinetics were modeled according to Peleg, Fick and Page's equations, which presented good fittings of the experimental data. Peleg's equation and Page's model presented the best fitting and showed excellent predictive capacity for water loss and salt gain data. The effective diffusivity determined using Fick's Second Law applied to slice geometry was found to be in the range from 3.82 x 10-11 to 7.46 x 10-11 m²/s for water loss and from 1.18 x 10-10 to 3.38 x 10-11 m²/s for solid gain.
Resumo:
A comparative analysis of the theoretical-experimental study, developed by Hsu on the hydration of Amsoy 71 soybean grain, was performed through several soaking experiments using CD 202 soybean at 10, 20, 30, 40, and 50 °C, measuring moisture content over time. The results showed that CD 202 soybean equilibrium moisture content, Xeq, does not depend on temperature and is 21% higher than that found by Hsu, suggesting that soybean cultivar exerts great influence on Xeq. The Hsu model was numerically solved and its parameters were adjusted by the least squares method, with maximum deviations of +/- 10% relative to the experimental values. The limiting step in the mass transfer process during hydration corresponds to water diffusion inside the grain, leading to radial moisture gradients that decrease over time and with an increase in temperature. Regardless of the soybean cultivar, diffusivity increases as temperature or moisture content increases. However, the values of this transport property for Amsoy 71 were superior to those of CD 202, very close at the beginning of hydration at 20 °C and almost three times higher at the end of hydration at 50 °C.
Resumo:
Rheology is the science that studies the deformation and flow of solids and fluids under the influence of mechanical forces. The rheological measures of a product in the stage of manufacture can be useful in quality control. The microstructure of a product can also be correlated with its rheological behavior allowing for the development of new materials. Rheometry permits attainment of rheological equations applied in process engineering, particularly unit operations that involve heat and mass transfer. Consumer demands make it possible to obtain a product that complies with these requirements. Chocolate industries work with products in a liquid phase in conching, tempering, and also during pumping operations. A good design of each type of equipment is essential for optimum processing. In the design of every process, it is necessary to know the physical characteristics of the product. The rheological behavior of chocolate can help to know the characteristics of application of the product and its consumers. Foods are generally in a metastable state. Their texture depends on the structural changes that occur during processing. Molten chocolate is a suspension with properties that are strongly affected by particle characteristics including not only the dispersed particles but also the fat crystals formed during chocolate cooling and solidification. Chocolate rheology is extensively studied, and it is known that chocolate texture and stability is strongly affected by the presence of specific crystals
Resumo:
The partial replacement of NaCl by KCl is a promising alternative to produce a cheese with lower sodium content since KCl does not change the final quality of the cheese product. In order to assure proper salt proportions, mathematical models are employed to control the product process and simulate the multicomponent diffusion during the reduced salt cheese ripening period. The generalized Fick's Second Law is widely accepted as the primary mass transfer model within solid foods. The Finite Element Method (FEM) was used to solve the system of differential equations formed. Therefore, a NaCl and KCl multicomponent diffusion was simulated using a 20% (w/w) static brine with 70% NaCl and 30% KCl during Prato cheese (a Brazilian semi-hard cheese) salting and ripening. The theoretical results were compared with experimental data, and indicated that the deviation was 4.43% for NaCl and 4.72% for KCl validating the proposed model for the production of good quality, reduced-sodium cheeses.