50 resultados para ions leaching

em Scielo Saúde Pública - SP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogen has a complex dynamics in the soil-plant-atmosphere system. N fertilizers are subject to chemical and microbial transformations in soils that can result in significant losses. Considering the cost of fertilizers, the adoption of good management practices like fertigation could improve the N use efficiency by crops. Water balances (WB) were applied to evaluate fertilizer N leaching using 15N labeled urea in west Bahia, Brazil. Three scenarios (2008/2009) were established: i) rainfall + irrigation the full year, ii) rainfall only; and iii) rainfall + irrigation only in the dry season. The water excess was considered equal to the deep drainage for the very flat area (runoff = 0) with a water table located several meters below soil surface (capillary rise = 0). The control volume for water balance calculations was the 0 - 1 m soil layer, considering that it involves the active root system. The water drained below 1 m was used to estimate fertilizer N leaching losses. WB calculations used the mathematic model of Penman-Monteith for evapotranspiration, considering the crop coefficient equal to unity. The high N application rate associated to the high rainfall plus irrigation was found to be the main cause for leaching, which values were 14.7 and 104.5 kg ha-1 for the rates 400 and 800 kg ha-1 of N, corresponding to 3.7 and 13.1 % of the applied fertilizer, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrate losses from soil profiles by leaching should preferentially be monitored during high rainfall events and during irrigation when fertilizer nitrogen applications are elevated. Using a climatologic water balance, based on the models of Thornthwaite and Penman Monteith for potential evapotranspiration, drainage soil water fluxes below the root zone were estimated in a fertigated coffee crop. Soil solution extraction at the depth of 1 m allowed the calculation of nitrate leaching. The average nitrate concentration in soil solution for plots that received nitrogen by fertigation at a rate of 400 kg ha-1, was 5.42 mg L-1, surpassing the limit of the Brazilian legislation of 10.0 mg L-1, only during one month. For plots receiving 800 kg ha-1 of nitrogen, the average was 25.01 mg L-1, 2.5 times higher than the above-mentioned limit. This information indicates that nitrogen rates higher than 400 kg ha-1 are potentially polluting the ground water. Yearly nitrate amounts of leaching were 24.2 and 153.0 kg ha-1 for the nitrogen rates of 400 and 800 kg ha-1, respectively. The six times higher loss indicates a cost/benefit problem for coffee fertigations above 400 kg ha-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To test the hypothesis that short periods of ischemia may increase the myocardial protection obtained with intermittent crossclamping of the aorta. METHODS: In the control group (18 patients), surgery was performed with systemic hypothermia at 32ºC and intermittent crossclamping of the aorta. Extracorporeal circulation was used. In the preconditioning group (17 patients), 2 crossclampings of the aorta lasting 3min each were added prior to the intermittent crossclamping of the conventional technique with an interval of 2min of reperfusion between them. Blood samples for analyses of pH, pCO2, pO2, sodium, potassium, calcium, and magnesium were obtained from the coronary sinus at the beginning of extracorporeal circulation (time 1), at the end of the first anastomosis (time 2), and at the end of extracorporeal circulation (time 3). RESULTS: No difference was observed in the results of the 2 groups, except for a variation in the ionic values in the different times of blood withdrawal; sodium values, however, remained stable. All patients had a good clinical outcome. CONCLUSION: The results of intermittent crossclamping of the aorta with moderate hypothermia were not altered by the use of ischemic preconditioning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have been able to label the excretory system of cercariae and all forms of schistosomula, immature and adult worms with the highly fluorescent dye resorufin. We have shown that the accumulation of the resorufin into the excretory tubules and collecting ducts of the male adult worm depends on the presence of extracellular calcium and phosphate ions. In the adult male worms, praziquantel (PZQ) prevents this accumulation in RPMI medium and disperses resorufin from tubules which have been prelabelled. Female worms and all other developmental stages are much less affected either by the presence of calcium and phosphate ions, or the disruption caused by PZQ. The male can inhibit the excretory system in paired female. Fluorescent PZQ localises in the posterior gut (intestine) region of the male adult worm, but not in the excretory system, except for the anionic carboxy fluorescein derivative of PZQ, which may be excreted by this route. All stages of the parasite can recover from damage by PZQ treatment in vitro. The excretory system is highly sensitive to damage to the surface membrane and may be involved in vesicle movement and damage repair processes. In vivo the adult parasite does not recover from PZQ treatment, but what is inhibiting recovery is unknown, but likely to be related to immune effector molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This experiment was carried out under greenhouse conditions with soil pots during 210 days, to evaluate the effect of calcitic papermill lime-sludge application (at the rates 0, 773, 1.547, and 2.320 mg kg-1 or respective equivalents to control, 2, 4, and 6 t ha-1), on chemical composition of soil leachate and its effects on eucalypt growth and yield. Highest soil leachate pH, SO4, and Na concentrations occurred in the 4 and 6 t ha-1 treatments. Soil leachate nitrate concentrations decreased with increasing lime-sludge rate. Soil leachate phosphate remained low (below the detection limit) in all treatments until 120 days, while the concentration increased in the lime-sludge treatments at 210 days (last sampling) in about 600 mg L-1. Lime-sludge decreased leachate Mg concentration, but had no significant effect among rates. Soil leachate Ca, K, B, Cu, Fe, and Zn did not change significantly for any lime-sludge application rates. The maximum NO3, Ca, Mg, K, and Na concentrations in the soil leachate occurred at 60 days after lime-sludge application (leaching equivalent to 1 pore volume), but for pH and SO4, the maximum occurred at 210 days (leaching equivalent to 4 pore volumes). Lime-sludge application decreased the concentration of exchangeable Al in the soil. Plant diameter growth and dry matter yield were increased with increasing lime-sludge rate. Beneficial effects on mineral nutrition (P, K, Ca, B, and Zn) of eucalypts were also obtained by the application of 4 and 6 t ha-1 of lime-sludge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High N concentrations in biosolids are one of the strongest reasons for their agricultural use. However, it is essential to understand the fate of N in soils treated with biosolids for both plant nutrition and managing the environmental risk of NO3--N leaching. This work aimed at evaluating the risk of NO3--N leaching from a Spodosol and an Oxisol, each one treated with 0.5-8.0 dry Mg ha-1 of fresh tertiary sewage sludge, composted biosolids, limed biosolids, heat-dried biosolids and solar-irradiated biosolids. Results indicated that under similar application rates NO3--N accumulated up to three times more in the 20 cm topsoil of the Oxisol than the Spodosol. However, a higher water content held at field capacity in the Oxisol compensated for the greater nitrate concentrations. A 20 % NO3--N loss from the root zone in the amended Oxisol could be expected. Depending on the biosolids type, 42 to 76 % of the NO3--N accumulated in the Spodosol could be expected to leach down from the amended 20 cm topsoil. NO3--N expected to leach from the Spodosol ranged from 0.8 (composted sludge) to 3.5 times (limed sludge) the amounts leaching from the Oxisol treated alike. Nevertheless, the risk of NO3--N groundwater contamination as a result of a single biosolids land application at 0.5-8.0 dry Mg ha-1 could be considered low.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The industrial refining of kaolin involves the removal of iron oxides and hydroxides along with other impurities that cause discoloration of the final product and depreciate its commercial value, particularly undesirable if destined to the paper industry. The chemical leaching in the industrial processing requires treatments with sodium hyposulfite, metallic zinc, or sulfuric and phosphoric acids, in order to reduce, dissolve and remove ferruginous compounds. To mitigate the environmental impact, the acidic effluent from the leaching process must be neutralized, usually with calcium oxide. The resulting solid residue contains phosphorous, zinc, and calcium, among other essential nutrients for plant growth, suggesting its use as a macro and micronutrient source. Samples of such a solid industrial residue were used here to evaluate their potential as soil fertilizer in an incubation greenhouse experiment with two soil samples (clayey and medium-textured). The small pH shift generated by applying the residue to the soil was not a limiting factor for its use in agriculture. The evolution of the concentrations of exchangeable calcium, and phosphorous and zinc extractability by Mehlich-1 extractant during the incubation period confirms the potential use of this industrial residue as agricultural fertilizer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogen usually determines the productive potential of forage crops, although it is highly unstable in the environment. Studies on recovery rates and use efficiency are important for more reliable fertilizer recommendations to reduce costs and avoid environmental pollution. The purpose of this study was to evaluate N use efficiency and recovery rate of Alexandergrass pasture (Brachiaria - Syn. Urochloa plantaginea) as well as N-NO3- and N-NH4+ soil concentrations using different levels of N fertilization under two grazing intensities. The experiment was arranged in a randomized block design in a factorial scheme with three replications. Treatments consisted of three N rates (0, 200 and 400 kg ha-1 N) and two grazing intensities termed low mass (LM; forage mass of 2,000 kg ha-1 of DM) and high mass (HM; forage mass of 3,600 kg ha-1 of DM) under continuous stocking and variable stocking rates. Results of N fertilization with 200 kg ha-1 were better than with 400 kg ha-1 N. There was a significant effect of N rates on soil N-NO3-concentration with higher levels in the first layer of the soil profile in the treatment with 400 kg ha-1 N. Grazing intensity also affected soil N-NO3- concentration, by increasing the levels under the higher stocking rate (lower forage mass).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Especially under no-tillage, subsuface soil acidity has been a problem, because it depends on base leaching, which has been associated with the presence of low molecular weigth organic acids and companion anions. The objective of this study was to evaluate exchangeable base cation leaching as affected by surface liming along with annual urea side-dressing of maize and upland rice. Treatments consisted of four lime rates (0, 1500, 3000, and 6000 kg ha-1) combined with four nitrogen rates (0, 50, 100, and 150 kg ha-1) applied to maize (Zea mays) and upland rice (Oryza sativa), in two consecutive years. Maize was planted in December, three months after liming. In September of the following year, pearl millet (Pennisetum glaucum) was planted without fertilization and desiccated 86 days after plant emergence. Afterwards, upland rice was grown. Immediately after upland rice harvest, 18 months after surface liming, pH and N-NO3-, N-NH4+, K, Ca, and Mg levels were evaluated in soil samples taken from the layers 0-5, 5-10, 10-20 and 20-40 cm. Higher maize yields were obtained at higher N rates and 3000 kg ha-1 lime. Better results for upland rice and pearl millet yields were also obtained with this lime rate, irrespective of N levels. The vertical mobility of K, Ca and Mg was higher in the soil profiles with N fertilization. Surface liming increased pH in the upper soil layers causing intense nitrate production, which was leached along with the base cations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leaching of nitrate (NO3-) can increase the groundwater concentration of this anion and reduce the agronomical effectiveness of nitrogen fertilizers. The main soil property inversely related to NO3- leaching is the anion exchange capacity (AEC), whose determination is however too time-consuming for being carried out in soil testing laboratories. For this reason, this study evaluated if more easily measurable soil properties could be used to estimate the resistance of subsoils to NO3- leaching. Samples from the subsurface layer (20-40 cm) of 24 representative soils of São Paulo State were characterized for particle-size distribution and for chemical and electrochemical properties. The subsoil content of adsorbed NO3- was calculated from the difference between the NO3- contents extracted with 1 mol L-1 KCl and with water; furthermore, NO3- leaching was studied in miscible displacement experiments. The results of both adsorption and leaching experiments were consistent with the well-known role exerted by AEC on the nitrate behavior in weathered soils. Multiple regression analysis indicated that in subsoils with (i) low values of remaining phosphorus (Prem), (ii) low soil pH values measured in water (pH H2O), and (iii) high pH values measured in 1 moL L-1 KCl (pH KCl), the amounts of surface positive charges tend to be greater. For this reason, NO3- leaching tends to be slower in these subsoils, even under saturated flow condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of animal manure to soil can increase phosphorus availability to plants and enhance transfer of the nutrient solution drained from the soil surface or leached into the soil profile. The aim of this study was to evaluate the effect of successive applications of organic and mineral nutrient sources on the available content, surface runoff and leaching of P forms in a Typic Hapludalf in no-tillage systems. Experiment 1 was set up in 2004 in the experimental area of UFSM, in Santa Maria (RS, Brazil). The treatments consisted of: control (without nutrient application) and application of pig slurry (PS), pig deep-litter (PL), cattle slurry (CS), and mineral fertilizers (NPK). The rates were determined to meet the N crop requirements of no-tillage black oat and maize, grown in the 2010/2011 growing season. The soil solution was collected after each event (rain + runoff or leaching) and the soluble, particulate and total P contents were measured. In November 2008, soil was collected in 2 cm intervals to a depth of 20 cm, in 5 cm intervals to a depth of 40 cm, and in 10 cm intervals to a depth of 70 cm. The soil was dried and ground, and P determined after extraction by anion exchange resin (AER). In experiment 2, samples collected from the Typic Hapludalf near experiment 1 were incubated for 20, 35, 58, 73 and 123 days after applying the following treatments: soil, soil + PS, soil + PL, soil + CS and soil + NPK. Thereafter, the soil was sampled and P was analyzed by AER. The applications of nutrient sources over the years led to an increase in available P and its migration in the soil profile. This led to P transfer via surface runoff and leaching, with the largest transfer being observed in PS and PL treatments, in which most P was applied. The soil available P and P transfer via surface runoff were correlated with the amounts applied, regardless of the P source. However, P transfer by leaching was not correlated with the applied nutrient amount, but rather with the solution amount leached in the soil profile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Management of boron fertilization depends on the magnitude of B leaching in the soil profile, which varies proportionally with the concentration of B in the soil solution, which, in turn, decreases as the soil pH increases due to the higher sorption of B on soil solid surfaces. The objective of this study was to quantify the effect of liming and rates of B applied to the soil on B leaching. The experiment was carried out in the laboratory in 2012, and treatments consisted of a factorial combination of two rates of liming (without and with lime to raise the soil pH to 6.0) and five rates of B (0, 10, 20, 50 and 100 mg kg-1, as boric acid). A Typic Rhodudalf was used, containing 790 g kg-1 clay and 23 g kg-1 organic matter; the pH(H2O) was 4.6. Experimental units were composed of PVC leaching columns (0.10 m in diameter) containing 1.42 kg of soil (dry base). Boron was manually mixed with the top 0.15 m of the soil. After that, every seven days for 15 weeks, 300 mL of distilled water were added to the top of each column. In the percolated solution, both the volume and concentration of B were measured. Leaching of B decreased with increased soil pH and, averaged across the B rates applied, was 58 % higher from unlimed (pH 4.6) than from limed (pH 6.6) samples as a result of the increase in B sorption with higher soil pH. In spite of its high vertical mobility, the residual effect of B was high in this oxisol, mainly in the limed samples where 80 % of B applied at the two highest rates remained in the soil, even after 15 water percolations. Total recovery of applied B, including leached B plus B extracted from the soil after all percolations, was less than 50 %, showing that not all sorbed B was quantified by the hot water extraction method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A lysimeter experiment was carried out with sugarcane aiming to evaluate the leaching of nitrogen derived from either urea (15N) or the soil/sugarcane crop residues. The leaching of K+, Ca2+, and Mg2+ was also evaluated. The experiment was a factorial 2x4. The influencing factors were: firstly, the differential addition of two kinds of sugarcane remains to the soil, simulating conditions of cane- plantation renewal after the cane crop harvest, with and without previous straw removal by burning; secondly, four doses of N: 0, 30, 60, and 90 kg ha-1. During the experimental period the total volume of water received by the sugarcane-soil system was 2,015 mm, with 1,255 mm as precipitation and 760 mm as irrigation. The loss of N by leaching from the fertilizer (15N) was not detected. In the first three weeks the largest losses of N by leaching occurred, originating from the soil/sugarcane remains-N. The mean of leached N during the experimental period of 11 months was of 4.5 kg ha-1. The mean losses of K+, Ca2+, and Mg2+ were of 13, 320 and 80 kg ha-1, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to adapt the application of electrolytic conductivity and potassium leaching tests to assess the viability of cryopreserved embryos of 'Anão Verde do Brasil de Jiqui' (AVeJBr) coconut. The zygotic embryos were excised, sterilized and subjected to four cryoprotectant treatments combined with three incubation times (12, 16 and 20 hours), totaling 12 treatments. The pre-treatment of mature zygotic embryos of AVeJBr coconut using a cryoprotectant with 1.75 mol L-1 of sucrose + 15% glycerol for 12 and 16 hours promoted lower embryo humidity and increased viability in electrolytic conductivity and potassium leaching tests. Samples with ten embryos are sufficient for electrolytic conductivity analysis in cryopreserved or non-cryopreserved AVeJBr coconut zygotic embryos. The 4 to 8 hour imbibition period of the embryos is promising for the electrolytic conductivity analysis of non-cryopreserved mature zygotic embryos of AVeJBr coconut.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a detailed study of the leaching behavior of deactivated hydrotreating catalysts (CoMo, NiMo/Al2O3) in presence of oxalate and NH4+ ions in various media. The yield of metals recovery may be optimized by adjusting several experimental parameters (time, temperature, etc). Leaching is limited by physical factors (diffusional effects caused by coke) and by the existence of silicate/spinel-like species which are poorly soluble in leaching solutions. Coke may be eliminated by an oxidation step at temperatures between 300-400ºC. Above 400ºC, solubilization of Ni and Co is drastically reduced. 50-90% wt of sulphate species and 15-30% wt of phosphate ions are solubilized during leaching. Silicon (as SiO2) is not solubilized. The best Ni-Co-Mo recoveries are in the 70-90% wt range; Fe recovery may be quantitative, whereas Al leaching may be lower than 5% wt.