14 resultados para heat kernel,worldline model,perturbative quantum gravity
em Scielo Saúde Pública - SP
Resumo:
The atomic shell structure can be observed by inspecting the experimental periodic properties of the Periodic Table. The (quantum) shell structure emerges from these properties and in this way quantum mechanics can be explicitly shown considering the (semi-)quantitative periodic properties. These periodic properties can be obtained with a simple effective Bohr model. An effective Bohr model with an effective quantum defect (u) was considered as a probe in order to show the quantum structure embedded in the Periodic Table. u(Z) shows a quasi-smoothed dependence of Z, i.e., u(Z) ≈ Z2/5 - 1.
Resumo:
ABSTRACT Given the need to obtain systems to better control broiler production environment, we performed an experiment with broilers from 1 to 21 days, which were submitted to different intensities and air temperature durations in conditioned wind tunnels and the results were used for validation of afuzzy model. The model was developed using as input variables: duration of heat stress (days), dry bulb air temperature (°C) and as output variable: feed intake (g) weight gain (g) and feed conversion (g.g-1). The inference method used was Mamdani, 20 rules have been prepared and the defuzzification technique used was the Center of Gravity. A satisfactory efficiency in determining productive responses is evidenced in the results obtained in the model simulation, when compared with the experimental data, where R2 values calculated for feed intake, weight gain and feed conversion were 0.998, 0.981 and 0.980, respectively.
Resumo:
Plasmodium falciparum resistant strain development has encouraged the search for new antimalarial drugs. Febrifugine is a natural substance with high activity against P. falciparum presenting strong emetic property and liver toxicity, which prevent it from being used as a clinical drug. The search for analogues that could have a better clinical performance is a current topic. We aim to investigate the theoretical electronic structure by means of febrifugine derivative family semi-empirical molecular orbital calculations, seeking the electronic indexes that could help the design of new efficient derivatives. The theoretical results show there is a clustering in well-defined ranges of several electronic indexes of the most selective molecules. The model proposed for achieving high selectivity was tested with success.
Resumo:
We summarize here the main characteristics of a novel model of pulmonary hypersensitivity. Mice were immunized with a subcutaneous implant of a fragment of heat solidified chicken egg white and 14 days later challenged with ovalbumin given either by aerosol or by intratracheal instillation. This procedure induces a persistent eosinophilic lung inflammation, a marked bone marrow eosinophilia, and Th2-type isotypic profile with histopathological findings that resemble human asthma. Further, this model is simple to perform, reproducible in different strains of mice, does not require adjuvants nor multiple boosters. Based on these characteristics we propose it as a suitable murine model of allergic eosinophilic lung inflammation.
Resumo:
Potential parameters sensitivity analysis for helium unlike molecules, HeNe, HeAr, HeKr and HeXe is the subject of this work. Number of bound states these rare gas dimers can support, for different angular momentum, will be presented and discussed. The variable phase method, together with the Levinson's theorem, is used to explore the quantum scattering process at very low collision energy using the Tang and Toennies potential. These diatomic dimers can support a bound state even for relative angular momentum equal to five, as in HeXe. Vibrational excited states, with zero angular momentum, are also possible for HeKr and HeXe. Results from sensitive analysis will give acceptable order of magnitude on potentials parameters.
Resumo:
This work studies the forced convection problem in internal flow between concentric annular ducts, with radial fins at the internal tube surface. The finned surface heat transfer is analyzed by two different approaches. In the first one, it is assumed one-dimensional heat conduction along the internal tube wall and fins, with the convection heat transfer coefficient being a known parameter, determined by an uncoupled solution. In the other way, named conjugated approach, the mathematical model (continuity, momentum, energy and K-epsilon equations) applied to tube annuli problem was numerically solved using finite element technique in a coupled formulation. At first time, a comparison was made between results obtained for the conjugated problem and experimental data, showing good agreement. Then, the temperature profiles under these two approaches were compared to each other to analyze the validity of the one-dimensional classical formulation that has been utilized in the heat exchanger design.
Resumo:
In two-phase miniature and microchannel flows, the meniscus shape must be considered due to effects that are affected by condensation and/or evaporation and coupled with the transport phenomena in the thin film on the microchannel wall, when capillary forces drive the working fluid. This investigation presents an analytical model for microchannel condensers with a porous boundary, where capillary forces pump the fluid. Methanol was selected as the working fluid. Very low liquid Reynolds numbers were obtained (Re~6), but very high Nusselt numbers (Nu~150) could be found due to the channel size (1.5 mm) and the presence of the porous boundary. The meniscus calculation provided consistent results for the vapor interface temperature and pressure, as well as the meniscus curvature. The obtained results show that microchannel condensers with a porous boundary can be used for heat dissipation with reduced heat transfer area and very high heat dissipation capabilities.
Resumo:
Hydration is recommended in order to decrease the overload on the cardiovascular system when healthy individuals exercise, mainly in the heat. To date, no criteria have been established for hydration for hypertensive (HY) individuals during exercise in a hot environment. Eight male HY volunteers without another medical problem and 8 normal (NO) subjects (46 ± 3 and 48 ± 1 years; 78.8 ± 2.5 and 79.5 ± 2.8 kg; 171 ± 2 and 167 ± 1 cm; body mass index = 26.8 ± 0.7 and 28.5 ± 0.6 kg/m²; resting systolic (SBP) = 142.5 and 112.5 mmHg and diastolic blood pressure (DBP) = 97.5 and 78.1 mmHg, respectively) exercised for 60 min on a cycle ergometer (40% of VO2peak) with (500 ml 2 h before and 115 ml every 15 min throughout exercise) or without water ingestion, in a hot humid environment (30ºC and 85% humidity). Rectal (Tre) and skin (Tsk) temperatures, heart rate (HR), SBP, DBP, double product (DP), urinary volume (Vu), urine specific gravity (Gu), plasma osmolality (Posm), sweat rate (S R), and hydration level were measured. Data were analyzed using ANOVA in a split plot design, followed by the Newman-Keuls test. There were no differences in Vu, Posm, Gu and S R responses between HY and NO during heat exercise with or without water ingestion but there was a gradual increase in HR (59 and 51%), SBP (18 and 28%), DP (80 and 95%), Tre (1.4 and 1.3%), and Tsk (6 and 3%) in HY and NO, respectively. HY had higher HR (10%), SBP (21%), DBP (20%), DP (34%), and Tsk (1%) than NO during both experimental situations. The exercise-related differences in SBP, DP and Tsk between HY and NO were increased by water ingestion (P < 0.05). The results showed that cardiac work and Tsk during exercise were higher in HY than in NO and the difference between the two groups increased even further with water ingestion. It was concluded that hydration protocol recommended for NO during exercise could induce an abnormal cardiac and thermoregulatory responses for HY individuals without drug therapy.
Resumo:
In order to develop a new experimental animal model of infection with Mycobacterium chelonae in keratomileusis, we conducted a double-blind prospective study on 24 adult male New Zealand rabbits. One eye of each rabbit was submitted to automatic lamellar keratotomy with the automatic corneal shaper under general anesthesia. Eyes were immunosuppressed by a single local injection of methyl prednisolone. Twelve animals were inoculated into the keratomileusis interface with 1 µl of 10(6) heat-inactivated bacteria (heat-inactivated inoculum controls) and 12 with 1 µl of 10(6) live bacteria. Trimethoprim drops (0.1%, w/v) were used as prophylaxis for the surgical procedure every 4 h (50 µl, qid). Animals were examined by 2 observers under a slit lamp on the 1st, 3rd, 5th, 7th, 11th, 16th, and 23rd postoperative days. Slit lamp photographs were taken to document clinical signs. Animals were sacrificed when corneal disease was detected and corneal samples were taken for microbiological analysis. Eleven of 12 experimental rabbits developed corneal disease, and M. chelonae could be isolated from nine rabbits. Eleven of the 12 controls receiving a heat-inactivated inoculum did not develop corneal disease. M. chelonae was not isolated from any of the control rabbits receiving a heat-inactivated inoculum, or from the healthy cornea of control rabbits. Corneal infection by M. chelonae was successfully induced in rabbits submitted to keratomileusis. To our knowledge, this is the first animal model of M. chelonae infection following corneal flaps for refractive surgery to be described in the literature and can be used for the analysis of therapeutic responses.
Resumo:
Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries.
Resumo:
The determination of the sterilization value for low acid foods in retorts includes a critical evaluation of the factory's facilities and utilities, validation of the heat processing equipment (by heat distribution assays), and finally heat penetration assays with the product. The intensity of the heat process applied to the food can be expressed by the Fo value (sterilization value, in minutes, at a reference temperature of 121.1 °C, and a thermal index, z, of 10 °C, for Clostridium botulinum spores). For safety reasons, the lowest value for Fo is frequently adopted, being obtained in heat penetration assays as indicative of the minimum process intensity applied. This lowest Fo value should always be higher than the minimum Fo recommended for the food in question. However, the use of the Fo value for the coldest can fail to statistically explain all the practical occurrences in food heat treatment processes. Thus, as a result of intense experimental work, we aimed to develop a new focus to determine the lowest Fo value, which we renamed the critical Fo. The critical Fo is based on a statistical model for the interpretation of the results of heat penetration assays in packages, and it depends not only on the Fo values found at the coldest point of the package and the coldest point of the equipment, but also on the size of the batch of packages processed in the retort, the total processing time in the retort, and the time between CIPs of the retort. In the present study, we tried to explore the results of physical measurements used in the validation of food heat processes. Three examples of calculations were prepared to illustrate the methodology developed and to introduce the concept of critical Fo for the processing of canned food.
Resumo:
The sorption behavior of dry products is generally affected by the drying method. The sorption isotherms are useful to determine and compare thermodynamic properties of passion fruit pulp powder processed by different drying methods. The objective of this study is to analyze the effects of different drying methods on the sorption properties of passion fruit pulp powder. Passion fruit pulp powder was dehydrated using different dryers: vacuum, spray dryer, vibro-fluidized, and freeze dryer. The moisture equilibrium data of Passion Fruit Pulp (PFP) powders with 55% of maltodextrin (MD) were determined at 20, 30, 40 and 50 ºC. The behavior of the curves was type III, according to Brunauer's classification, and the GAB model was fitted to the experimental equilibrium data. The equilibrium moisture contents of the samples were little affected by temperature variation. The spray dryer provides a dry product with higher adsorption capacity than that of the other methods. The vibro-fluidized bed drying showed higher adsorption capacity than that of vacuum and freeze drying. The vacuum and freeze drying presented the same adsorption capacity. The isosteric heats of sorption were found to decrease with increasing moisture content. Considering the effect of drying methods, the highest isosteric heat of sorption was observed for powders produced by spray drying, whereas powders obtained by vacuum and freeze drying showed the lowest isosteric heats of sorption.
Resumo:
The aging process of alcoholic beverages is generally conducted in wood barrels made with species from Quercus sp. Due to the high cost and the lack of viability of commercial production of these trees in Brazil, there is demand for new alternatives to using other native species and the incorporation of new technologies that enable greater competitiveness of sugar cane spirit aged in Brazilian wood. The drying of wood, the thermal treatment applied to it, and manufacturing techniques are important tools in defining the sensory quality of alcoholic beverages after being placed in contact with the barrels. In the thermal treatment, several compounds are changed by the application of heat to the wood and various studies show the compounds are modified, different aromas are developed, there is change in color, and beverages achieve even more pleasant taste, when compared to non-treated woods. This study evaluated the existence of significant differences between hydro-alcoholic solutions of sugar cane spirits elaborated from different species of thermo-treated and non-treated wood in terms of aroma. An acceptance test was applied to evaluate the solutions preferred by tasters under specific test conditions.
Resumo:
The purpose of this study was to investigate and model the water absorption process by corn kernels with different levels of mechanical damage Corn kernels of AG 1510 variety with moisture content of 14.2 (% d.b.) were used. Different mechanical damage levels were indirectly evaluated by electrical conductivity measurements. The absorption process was based on the industrial corn wet milling process, in which the product was soaked with a 0.2% sulfur dioxide (SO2) solution and 0.55% lactic acid (C3H6O3) in distilled water, under controlled temperatures of 40, 50, 60, and 70 ºC and different mechanical damage levels. The Peleg model was used for the analysis and modeling of water absorption process. The conclusion is that the structural changes caused by the mechanical damage to the corn kernels influenced the initial rates of water absorption, which were higher for the most damaged kernels, and they also changed the equilibrium moisture contents of the kernels. The Peleg model was well adjusted to the experimental data presenting satisfactory values for the analyzed statistic parameters for all temperatures regardless of the damage level of the corn kernels.