260 resultados para grass weeds
em Scielo Saúde Pública - SP
Resumo:
Two experiments were carried out to evaluate the initial plant growth of Eucalyptus urograndis growing in coexistence with Urochloa decumbens and U. ruziziensis. In 100-L box, one plant of U. decumbens or U. ruziziensis grew in coexistence with one plant of E. urograndis clones C219H or H15, respectively, in the distances of 0, 5, 10, 15, 20, 25, 30, 35, and 40 cm from the crop. After 30, 60, 90 (both clones), and 150 days (just for H15), growth characteristics were evaluated. Plants of both clones, growing in weed-free situations, showed a better growth and development than plants that grew in weedy situations, independently of the distance, having the highest plant height, stem diameter, dry mass of stem, and dry mass of leaves. As the same way, the number of branches, number of leaves, and leaf area of the clone C219H were similarly affected. Urochloa ruziziensis reduced the dry mass accumulation of stem and leaves by the rate of 0.06 and 0.32 g per plant, respectively, per each centimeter growing nearest to the crop, while U. decumbens reduced by 0.03 and 0.14 g per plant. The interference of U. decumbens and U. ruziziensis with E. urograndis is more intense when weedy plants grow in short distances from the crop.
Resumo:
In order to study the action of herbicides - sodium salt, amine salt and ester of 2,4-D, TCA and 2,4,5-T a preliminary experiment for pre-emergence weed control was corried out, and the corresponding results are given in table I and II. The corn used in the experiments was of the flint type 1A 3531. The loam soil on which the experiment has been carried out is called "terra roxa". All treatments were highly significant when compared with the check plots, except the 2B one in the control of broad leaf weeds, and 4B in the control of grass weeds. Among these treatments there are no significant differences. But we note the following: (table I). a) treatments of higher concentrations were superior to lower ones. b) the treatments which gave the best control for broad leaf weeds were in the following decreasing order: 1A, 5A and 3A. For grass weeds, they were 5A, 1A and 3A. c) the amine 2,4-D (600 grs. per hectare) supplied very good control when we get into consideration that on the acid basis, it was in very low concentration. d) TCA in high concentration affected the germination, growth and yield, in the lower one it did not show good control of weeds, especially of grasses. It is not suitable for pre-emergence control in corn. e) 2,4,5-T was not better than the 2,4-D products. As it is much more expensive than the others, economically its use in pre-emergence weed control in corn is not praticable. f) all the products used controled grass weeds as well as broad leaf ones; this show the superiority of the pre-emergence treatment method over that of post-emergence. g) Even a dose as strong as the treatment 1A (3.400g. of 2,4-D acid per hectare) did not damage corn production (table II). h) the superiority noted in the production of all the treatments with the exception of 2A, which damaged the plants, we atribute to the lack of competion between corn and weeds; all chek-plots suffered this competition, because they were not Probably, there was, also, hormonial effect of 2,4-D on the corn plant. Not withstanding the fact that the present experiment has been successful, we think that new researches are necessary, especially with the purpose of studying factors as climate and soil which in other countries, interferred with the success of the pre-emergence weed control.
Resumo:
This study aims to assess the composition of weed communities as a function of distinct selection factors, at neighboring areas submitted to distinct soil management and diverse use for sixteen years. Four areas submitted to distinct managements (conventional tillage system; no-till system; integration crop/livestock and continuous livestock) were sampled in relation to the occurrence and severity of weed species by the beginning of the planting season, being estimated the relative abundance, relative frequency and relative dominance of each weed species under each area, as well as the Importance Value Index for each species. Areas were also compared by the Sørensen's similarity coefficient. Areas where pasture and grazing were never present, exhibited a number of seedlings of weed species 250% higher than areas periodically or continuously under grazing, while the area of soil covered by weeds was 87% superior at the conventional tillage system in relation to the average of the other treatments. Grass weeds were the most important at the conventional tillage area while broadleaved weeds where more important at the no-till area, probably due also to herbicide selection factors. Under crop/livestock integration there may be the need to care about controlling seedlings of the forage species inside grain crops in succession.
Resumo:
Eleusine indica (goosegrass) is a diploid grass weed which has developed resistance to ACCase inhibitors during the last ten years due to the intensive and frequent use of sethoxydim to control grass weeds in soybean crops in Brazil. Plant dose-response assays confirmed the resistant behaviour of one biotype obtaining high resistance factor values: 143 (fenoxaprop), 126 (haloxyfop), 84 (sethoxydim) to 58 (fluazifop). ACCase in vitro assays indicated a target site resistance as the main cause of reduced susceptibility to ACCase inhibitors. PCR-generated fragments of the ACCase CT domain of the resistant and sensitive reference biotype were sequenced and compared. A point mutation was detected within the triplet of aspartate at the amino acid position 2078 (referred to EMBL accession no. AJ310767) and resulted in the triplet of glycine. These results constitute the first report on a target site mutation for a Brazilian herbicide resistant grass weed.
Resumo:
The effect of five adjuvants (non-ionic surfactant, paraffinic oil, vegetable oil, mixture of fatty acids methyl esters plus surfactant blend, and organosilicone) on diquat efficacy was assessed on poverty brome, sterile oat, and Italian ryegrass in field and pot experiments. All tank mixtures with diquat increased diquat efficacy from 50-54% to 77-98% as for fresh weight reduction, indicating significant enhancement of diquat efficacy on grasses. The increased efficacy was most likely attributed to better droplet retention and diffusion on the leaf surfaces. When combined with non-ionic surfactant, diquat showed slightly more rapid control of grass weeds (i.e. symptoms were visible within a few hours after application).
Resumo:
Sorghum, pearl millet, and Brachiaria ruziziensis have similar characteristics which have led to their use for mulch formation in no-till systems. This study was carried out to evaluate the potential of these three species as straw suppliers to suppress weed emergence. Initial findings led to the conclusion that both pearl millet and Brachiaria ruziziensis have similar or superior potential as weed suppressors, compared to sorghum straw, a species with recognized allelopathic potential. Subsequently, new trials were conducted under greenhouse conditions by sowing weed species in pots, followed by covering of the soil with the straw under evaluation. Independent experiments were conducted for Euphorbia heterophylla and Bidens pilosa. In each experiment, the factors analyzed were type of straw (pearl millet and B. ruziziensis), amount of straw (equivalent to 4 and 8 t ha-1 dry mass) and irrigation method (surface and subsurface). Both pearl millet and B. ruziziensis have shown to be species that can be cultivated to produce straw with allelopathic potential. These effects were effective in suppressing the emergence or early growth of E. heterophylla and B. pilosa. There was no difference in the suppression of emergence of these species when the soil cover level was alternated between 4 and 8 t ha-1 dry mass.
Resumo:
Corn is planted in the Center West region of Brazil as a second crop, following soybeans or beans. Intercropping of Brachiaria species with corn as a second crop increases the mulching in the cropping system. This study aimed to evaluate the weeds infestation in soybeans following corn/forages intercrop, as a function of corn plant structure, forage species and density. Experiments were conducted in a completely randomized blocks design with four replications, in Ponta Porã and Dourados municipalities, Mato Grosso do Sul state, Brazil, in 2010/2011. Treatments consisted of three corn hybrids with distinct plant architectures intercropped with three forage species: Brachiaria ruziziensis, B. brizantha and B.decumbens, at five densities, and the resulting dry mass was maintained throughout the winter. During the following cropping season, forages were desiccated prior to planting soybeans, and the dry mass of weeds, dry mass of the mulching, soil coverage by weeds, and the broadleaf/grass weed species index (WPI) were determined 15 days after soybean emergence, submitted to an F-test, and analyzed either by regression or by multiple mean comparison, according to the nature of the data. When intercropping corn with species of Brachiaria, a reduction in the overall weeds infestation may always be expected; among the studied forage species, more problems with weeds may be anticipated in areas with a less competitive species, e.g. B.ruziziensis. Under the conditions of the trials, B.brizantha and B.decumbens were more capable of inhibiting the emergence of weed species in the winter.
Resumo:
Herbicidal potential of different plant aqueous extracts was evaluated against early seedling growth of rice weeds in pot studies. Plant aqueous extracts of sorghum (Sorghum bicolor), sunflower (Helianthus annuus), brassica (Brassica compestris), mulberry (Morris alba), eucalyptus (Eucalyptus camaldunensis), and winter cherry (Withania somnifera) at a spray volume of 18 L ha-1 each at the 2-4 leaf stage of rice weeds viz horse purslane (Trianthema portulacastrum) [broad-leaf], jungle rice (Echinochloa colona), and E. crus-galli (barnyard grass) [grasses] and purple nut sedge (Cyperus rotundus) and rice flat sedge (C. iria) [sedges]. The results showed significant interactive effects between plant aqueous extracts and the tested weed species for seedling growth attributes depicting that allelopathic inhibition was species-specific. Shoot and root length, lateral plant spread, biomass accumulation, and leaf chlorophyll contents in test species were all reduced by different extracts. The study suggested the suppressive potential of allelopathic plant aqueous extracts against rice weeds, and offered promise for their usefulness as a tool for weed management under field conditions.
Resumo:
Studies of plant responses to defoliation are important to develop pasture management strategies. The objective of this study was to evaluate the population density of basal, aerial and reproductive tillers, tiller appearance and mortality rates, forage accumulation and sward structure in Marandu grass pastures under different grazing intensities. The experimental period was from January to June 2006, divided in three seasons: summer, autumn and winter. The pastures were continuously grazed using variable stocking rates. The grazing intensities corresponded to 15, 30 and 45 cm of sward height. The experiment was arranged in a complete randomized block design with three treatments and two replicates. The sward heights were measured twice a week. The response variables were: forage accumulation, forage mass and its morphological components; and population densities of basal (TPDb), aerial (TPDa) and reproductive (TPDr) tillers. The highest TPDb (P > 0.05) was recorded for the shortest sward pasture, and the highest TPDr (P<0.05) for the tallest sward pasture. Swards showed a tiller size/density compensation mechanism and, consequently, the forage accumulation was similar (P > 0.05) among the grazing intensities. Pasture with a sward height of 35 cm had 94% of sun light interception. The highest variations in forage accumulation and sward structure were more influenced by seasonal differences than by grazing intensities. Pastures of Marandu grass showed large flexibility in grazing management, which allowed it to be maintained at sward heights between 15 and 35 cm.
Resumo:
ABSTRACT Dynamics of the restoration of physical trails in the grass-cutting ant Atta capiguara. Leaf-cutting ants of the genus Atta build long physical trails by cutting the vegetation growing on the soil surface and removing the small objects they find across their path. Little is known on the dynamics of trail construction in these ants. How much time do they need to build a trail? To answer this question we selected six trails belonging to two different nests of A. capiguara and removed on each trail a block of soil of 20 cm × 15 cm that included a portion of the physical trail. This block was then replaced by a new block of the same size that was removed in the pasture near the trail and that was uniformly covered by the same type of vegetation as that found on the block of soil that was removed. The time required to restore the trail was then evaluated by the length of the grass blades found along the former location of the trail. The results show that ants rapidly restore the portion of the physical trail that was interrupted, which suggests that they could also do the same after their trails have been recolonized by the vegetation.
Resumo:
Erosion is deleterious because it reduces the soil's productivity capacity for growing crops and causes sedimentation and water pollution problems. Surface and buried crop residue, as well as live and dead plant roots, play an important role in erosion control. An efficient way to assess the effectiveness of such materials in erosion reduction is by means of decomposition constants as used within the Revised Universal Soil Loss Equation - RUSLE's prior-land-use subfactor - PLU. This was investigated using simulated rainfall on a 0.12 m m-1 slope, sandy loam Paleudult soil, at the Agriculture Experimental Station of the Federal University of Rio Grande do Sul, in Eldorado do Sul, State of Rio Grande do Sul, Brazil. The study area had been covered by native grass pasture for about fifteen years. By the middle of March 1996, the sod was mechanically mowed and the crop residue removed from the field. Late in April 1996, the sod was chemically desiccated with herbicide and, about one month later, the following treatments were established and evaluated for sod biomass decomposition and soil erosion, from June 1996 to May 1998, on duplicated 3.5 x 11.0 m erosion plots: (a) and (b) soil without tillage, with surface residue and dead roots; (c) soil without tillage, with dead roots only; (d) soil tilled conventionally every two-and-half months, with dead roots plus incorporated residue; and (e) soil tilled conventionally every six months, with dead roots plus incorporated residue. Simulated rainfall was applied with a rotating-boom rainfall simulator, at an intensity of 63.5 mm h-1 for 90 min, eight to nine times during the experimental period (about every two-and-half months). Surface and subsurface sod biomass amounts were measured before each rainfall test along with the erosion measurements of runoff rate, sediment concentration in runoff, soil loss rate, and total soil loss. Non-linear regression analysis was performed using an exponential and a power model. Surface sod biomass decomposition was better depicted by the exponential model, while subsurface sod biomass was by the power model. Subsurface sod biomass decomposed faster and more than surface sod biomass, with dead roots in untilled soil without residue on the surface decomposing more than dead roots in untilled soil with surface residue. Tillage type and frequency did not appreciably influence subsurface sod biomass decomposition. Soil loss rates increased greatly with both surface sod biomass decomposition and decomposition of subsurface sod biomass in the conventionally tilled soil, but they were minimally affected by subsurface sod biomass decomposition in the untilled soil. Runoff rates were little affected by the studied treatments. Dead roots plus incorporated residues were effective in reducing erosion in the conventionally tilled soil, while consolidation of the soil surface was important in no-till. The residual effect of the turned soil on erosion diminished gradually with time and ceased after two years.
Resumo:
The current high price of KCl and great dependence on importation to satisfy the Brazilian demand indicate the need for studies that evaluate the efficiency of other K sources, particularly those based on domestic raw material. For this purpose, a greenhouse experiment was conducted with samples of a sandy clay loam Typic Haplustox, in a completely randomized 4 x 3 x 2 factorial design: four K rates (0, 60, 120, and 180 mg kg-1), three sources (potassium chloride (KCl), fused magnesium potassium phosphate (FMPP) and a mixture of 70 % FMPP + 30 % KCl) and two particle sizes (100 and 60 mesh), with three replications. Potassium fertilization resulted in significant increases in shoot dry matter production and in K concentrations, both in soil and plants. The K source and particle size had no significant effect on the evaluated characteristics. Potassium critical levels in the soil and the shoots were 1.53 mmol c dm-3 and 19.1 g kg-1, respectively.
Resumo:
Of all nutrients, N has the strongest effect on grass growth and an adequate N fertilization can reduce the time required for the formation of high-quality mats. This study aimed to evaluate the influence of N fertilization on Bermuda grass sod production and quality. The experiment was conducted in an area of commercial sod production, in Capela do Alto, state of São Paulo. Cynodon dactylon (Pers) L., known as Bermuda grass, was evaluated in a randomized complete block design with five treatments and four replications. Treatments consisted of five N rates: 0, 150, 300, 450 and 600 kg ha-1. Increasing N applications to Bermuda grass increased the soil cover rate, reducing the time required for mat formation. The accumulation of rhizome + root + stolon dry matter was highest at a rate of 354 kg ha-1 N and the mat resistance to breakage at a rate of 365 kg ha-1 N. Nitrogen rates between 354 and 365 kg ha-1 increased mat resistance and consequently the suitability for postharvest handling, tending to improve the efficiency in the area.
Resumo:
Nitrogen and K deficiency are among the most yield limiting factors in Brazilian pastures. The lack of these nutrients can hamper the chlorophyll biosynthesis and N content in plant tissues. A greenhouse experiment was carried out to evaluate the relationship among N and K concentrations, the indirect determination of chlorophyll content (SPAD readings), nitrate reductase activity (RNO3-) in newly expanded leaf lamina (NL) and the dry matter yield for plant tops of Mombaça grass (Panicum maximum Jacq.). A fractionated 5² factorial design was used, with 13 combinations of N and K rates in the nutrient solution. The experimental units were arranged in a randomized block design, with four replications. Plants were harvested twice. The first harvest occurred 36 days after seedling transplanting and the second 29 days after the first. Significance occurred for the interaction between the N and K rates to SPAD readings and to RNO3- assessment taken on the NL during the first growth. Besides, RNO3- and SPAD readings increased only with the NL N concentration, reaching the highest values of both variables up to about 25 g kg-1, but were ratively constant at higher leaf N. Significant relationships either between SPAD readings or RNO3- activity and shoot dry mass weight were also observed. The critical levels of N concentration in the NL were, respectively, 22 and 17g kg-1 in the first and second harvest. Thus, SPAD instrument and RNO3- assessment can be used as complementary tools to evaluate the N status in forage grass.
Resumo:
The use of cover crops has been suggested as an effective method to maintain and/or increase the organic matter content, while maintaining and/or enhancing the soil physical, chemical and biological properties. The fertility of Cerrado soils is low and, consequently, phosphorus levels as well. Phosphorus is required at every metabolic stage of the plant, as it plays a role in the processes of protein and energy synthesis and influences the photosynthetic process. This study evaluated the influence of cover crops and phosphorus rates on soil chemical and biological properties after two consecutive years of common bean. The study analyzed an Oxisol in Selvíria (Mato Grosso do Sul, Brazil), in a randomized block, split plot design, in a total of 24 treatments with three replications. The plot treatments consisted of cover crops (millet, pigeon pea, crotalaria, velvet bean, millet + pigeon pea, millet + crotalaria, and millet + velvet bean) and one plot was left fallow. The subplots were represented by phosphorus rates applied as monoammonium phosphate (0, 60 and 90 kg ha-1 P2O5). In August 2011, the soil chemical properties were evaluated (pH, organic matter, phosphorus, potential acidity, cation exchange capacity, and base saturation) as well as biological variables (carbon of released CO2, microbial carbon, metabolic quotient and microbial quotient). After two years of cover crops in rotation with common bean, the cover crop biomass had not altered the soil chemical properties and barely influenced the microbial activity. The biomass production of millet and crotalaria (monoculture or intercropped) was highest. The biological variables were sensitive and responded to increasing phosphorus rates with increases in microbial carbon and reduction of the metabolic quotient.