13 resultados para fuzzy logic control
em Scielo Saúde Pública - SP
Resumo:
This work analyzes an active fuzzy logic control system in a Rijke type pulse combustor. During the system development, a study of the existing types of control for pulse combustion was carried out and a simulation model was implemented to be used with the package Matlab and Simulink. Blocks which were not available in the simulator library were developed. A fuzzy controller was developed and its membership functions and inference rules were established. The obtained simulation showed that fuzzy logic is viable in the control of combustion instabilities. The obtained results indicated that the control system responded to pulses in an efficient and desirable way. It was verified that the system needed approximately 0.2 s to increase the tube internal pressure from 30 to 90 mbar, with an assumed total delay of 2 ms. The effects of delay variation were studied. Convergence was always obtained and general performance was not affected by the delay. The controller sends a pressure signal in phase with the Rijke tube internal pressure signal, through the speakers, when an increase the oscillations pressure amplitude is desired. On the other hand, when a decrease of the tube internal pressure amplitude is desired, the controller sends a signal 180º out of phase.
Resumo:
An Autonomous Mobile Robot battery driven, with two traction wheels and a steering wheel is being developed. This Robot central control is regulated by an IPC, which controls every function of security, steering, positioning localization and driving. Each traction wheel is operated by a DC motor with independent control system. This system is made up of a chopper, an encoder and a microcomputer. The IPC transmits the velocity values and acceleration ramp references to the PIC microcontrollers. As each traction wheel control is independent, it's possible to obtain different speed values for each wheel. This process facilities the direction and drive changes. Two different strategies for speed velocity control were implemented; one works with PID, and the other with fuzzy logic. There were no changes in circuits and feedback control, except for the PIC microcontroller software. Comparing the two different speed control strategies the results were equivalent. However, in relation to the development and implementation of these strategies, the difficulties were bigger to implement the PID control.
Resumo:
The present study shows the development, simulation and actual implementation of a closed-loop controller based on fuzzy logic that is able to regulate and standardize the mass flow of a helical fertilizer applicator. The control algorithm was developed using MATLAB's Fuzzy Logic Toolbox. Both open and closed-loop simulations of the controller were performed in MATLAB's Simulink environment. The instantaneous deviation of the mass flow from the set point (SP), its derivative, the equipment´s translation velocity and acceleration were all used as input signals for the controller, whereas the voltage of the applicator's DC electric motor (DCEM) was driven by the controller as output signal. Calibration and validation of the rules and membership functions of the fuzzy logic were accomplished in the computer simulation phase, taking into account the system's response to SP changes. The mass flow variation coefficient, measured in experimental tests, ranged from 6.32 to 13.18%. The steady state error fell between -0.72 and 0.13g s-1 and the recorded average rise time of the system was 0.38 s. The implemented controller was able to both damp the oscillations in mass flow that are characteristic of helical fertilizer applicators, and to effectively respond to SP variations.
Resumo:
Modeling of water movement in non-saturated soil usually requires a large number of parameters and variables, such as initial soil water content, saturated water content and saturated hydraulic conductivity, which can be assessed relatively easily. Dimensional flow of water in the soil is usually modeled by a nonlinear partial differential equation, known as the Richards equation. Since this equation cannot be solved analytically in certain cases, one way to approach its solution is by numerical algorithms. The success of numerical models in describing the dynamics of water in the soil is closely related to the accuracy with which the water-physical parameters are determined. That has been a big challenge in the use of numerical models because these parameters are generally difficult to determine since they present great spatial variability in the soil. Therefore, it is necessary to develop and use methods that properly incorporate the uncertainties inherent to water displacement in soils. In this paper, a model based on fuzzy logic is used as an alternative to describe water flow in the vadose zone. This fuzzy model was developed to simulate the displacement of water in a non-vegetated crop soil during the period called the emergency phase. The principle of this model consists of a Mamdani fuzzy rule-based system in which the rules are based on the moisture content of adjacent soil layers. The performances of the results modeled by the fuzzy system were evaluated by the evolution of moisture profiles over time as compared to those obtained in the field. The results obtained through use of the fuzzy model provided satisfactory reproduction of soil moisture profiles.
Resumo:
The fuzzy logic admits infinite intermediate logical values between false and true. With this principle, it developed in this study a system based on fuzzy rules, which indicates the body mass index of ruminant animals in order to obtain the best time to slaughter. The controller developed has as input the variables weight and height, and as output a new body mass index, called Fuzzy Body Mass Index (Fuzzy BMI), which may serve as a detection system at the time of livestock slaughtering, comparing one another by the linguistic variables "Very Low", "Low", "Average ", "High" and "Very High". For demonstrating the use application of this fuzzy system, an analysis was made with 147 Nellore beeves to determine Fuzzy BMI values for each animal and indicate the location of body mass of any herd. The performance validation of the system was based on a statistical analysis using the Pearson correlation coefficient of 0.923, representing a high positive correlation, indicating that the proposed method is appropriate. Thus, this method allows the evaluation of the herd comparing each animal within the group, thus providing a quantitative method of farmer decision. It was concluded that this study established a computational method based on fuzzy logic that mimics part of human reasoning and interprets the body mass index of any bovine species and in any region of the country.
Resumo:
This work deals with an hybrid PID+fuzzy logic controller applied to control the machine tool biaxial table motions. The non-linear model includes backlash and the axis elasticity. Two PID controllers do the primary table control. A third PID+fuzzy controller has a cross coupled structure whose function is to minimise the trajectory contour errors. Once with the three PID controllers tuned, the system is simulated with and without the third controller. The responses results are plotted and compared to analyse the effectiveness of this hybrid controller over the system. They show that the proposed methodology reduces the contour error in a proportion of 70:1.
Resumo:
ABSTRACT Given the need to obtain systems to better control broiler production environment, we performed an experiment with broilers from 1 to 21 days, which were submitted to different intensities and air temperature durations in conditioned wind tunnels and the results were used for validation of afuzzy model. The model was developed using as input variables: duration of heat stress (days), dry bulb air temperature (°C) and as output variable: feed intake (g) weight gain (g) and feed conversion (g.g-1). The inference method used was Mamdani, 20 rules have been prepared and the defuzzification technique used was the Center of Gravity. A satisfactory efficiency in determining productive responses is evidenced in the results obtained in the model simulation, when compared with the experimental data, where R2 values calculated for feed intake, weight gain and feed conversion were 0.998, 0.981 and 0.980, respectively.
Resumo:
OBJECTIVE: To introduce a fuzzy linguistic model for evaluating the risk of neonatal death. METHODS: The study is based on the fuzziness of the variables newborn birth weight and gestational age at delivery. The inference used was Mamdani's method. Neonatologists were interviewed to estimate the risk of neonatal death under certain conditions and to allow comparing their opinions and the model values. RESULTS: The results were compared with experts' opinions and the Fuzzy model was able to capture the expert knowledge with a strong correlation (r=0.96). CONCLUSIONS: The linguistic model was able to estimate the risk of neonatal death when compared to experts' performance.
Resumo:
ABSTRACT The Body Mass Index (BMI) can be used by farmers to help determine the time of evaluation of the body mass gain of the animal. However, the calculation of this index does not reveal immediately whether the animal is ready for slaughter or if it needs special care fattening. The aim of this study was to develop a software using the Fuzzy Logic to compare the bovine body mass among themselves and identify the groups for slaughter and those that requires more intensive feeding, using "mass" and "height" variables, and the output Fuzzy BMI. For the development of the software, it was used a fuzzy system with applications in a herd of 147 Nellore cows, located in a city of Santa Rita do Pardo city – Mato Grosso do Sul (MS) state, in Brazil, and a database generated by Matlab software.
Resumo:
Coronary artery disease (CAD) is a worldwide leading cause of death. The standard method for evaluating critical partial occlusions is coronary arteriography, a catheterization technique which is invasive, time consuming, and costly. There are noninvasive approaches for the early detection of CAD. The basis for the noninvasive diagnosis of CAD has been laid in a sequential analysis of the risk factors, and the results of the treadmill test and myocardial perfusion scintigraphy (MPS). Many investigators have demonstrated that the diagnostic applications of MPS are appropriate for patients who have an intermediate likelihood of disease. Although this information is useful, it is only partially utilized in clinical practice due to the difficulty to properly classify the patients. Since the seminal work of Lotfi Zadeh, fuzzy logic has been applied in numerous areas. In the present study, we proposed and tested a model to select patients for MPS based on fuzzy sets theory. A group of 1053 patients was used to develop the model and another group of 1045 patients was used to test it. Receiver operating characteristic curves were used to compare the performance of the fuzzy model against expert physician opinions, and showed that the performance of the fuzzy model was equal or superior to that of the physicians. Therefore, we conclude that the fuzzy model could be a useful tool to assist the general practitioner in the selection of patients for MPS.
Resumo:
Exposure to air pollutants is associated with hospitalizations due to pneumonia in children. We hypothesized the length of hospitalization due to pneumonia may be dependent on air pollutant concentrations. Therefore, we built a computational model using fuzzy logic tools to predict the mean time of hospitalization due to pneumonia in children living in São José dos Campos, SP, Brazil. The model was built with four inputs related to pollutant concentrations and effective temperature, and the output was related to the mean length of hospitalization. Each input had two membership functions and the output had four membership functions, generating 16 rules. The model was validated against real data, and a receiver operating characteristic (ROC) curve was constructed to evaluate model performance. The values predicted by the model were significantly correlated with real data. Sulfur dioxide and particulate matter significantly predicted the mean length of hospitalization in lags 0, 1, and 2. This model can contribute to the care provided to children with pneumonia.
Resumo:
This work is a study of the implementation of a classical controller using a tuning method referred to as IMC (Internal Model Control) and aimed at the reduction of electrical energy consumption by the appropriate relation between energy consumption and the cooling time with forced air. The supervisory system installed was able to manipulate the variable of frequency of the signal power of the exhaust fan engine (forced air module), to accelerate or decelerate the loss of heat from the product to be cooled by airflow variation that passes through the mass of the produce. The results demonstrated a reduction in energy consumption from 64% and an increase of only 8% in the cooling time to the system using PI/IMC (Proportional - Integral with IMC) tuning method compared with the system in its operating nominal condition. This PI/IMC control may be implemented directly in a frequency converter, without the need to purchase a computer or PLC (programmable logic controller) to run the dedicated application, increasing its economical viability.
Resumo:
The process of cold storage chambers contributes largely to the quality and longevity of stored products. In recent years, it has been intensified the study of control strategies in order to decrease the temperature change inside the storage chamber and to reduce the electric power consumption. This study has developed a system for data acquisition and process control, in LabVIEW language, to be applied in the cooling system of a refrigerating chamber of 30m³. The use of instrumentation and the application developed fostered the development of scientific experiments, which aimed to study the dynamic behavior of the refrigeration system, compare the performance of control strategies and the heat engine, even due to the controlled temperature, or to the electricity consumption. This system tested the strategies for on-off control, PID and fuzzy. Regarding power consumption, the fuzzy controller showed the best result, saving 10% when compared with other tested strategies.