8 resultados para ectomycorrhizal
em Scielo Saúde Pública - SP
Resumo:
The basidiospores of Pisolithus sp. contain large amounts of lipids, indicating provision for future germination in the host rhizosphere. However, the accumulation, composition, and mobilization of lipids during formation and germination of these spores are largely unknown. In this study, lipid storage and fatty acid composition during basidiosporogenesis were analyzed in fresh basidiocarps using bright-field microscopy and gas chromatography. Abundant lipid bodies are found in the hyphae, basidia, and basidiospores of fungal basidiocarps. This evidences a considerable C transport in the basidiocarp to meet the C demand during basidiospore formation. Fatty acid composition analysis revealed the presence of 24 compounds with chains of 9 to 18 C atoms, either saturated or insaturated, with one or two insaturations. The fatty acid composition and content varied according to the developmental stage of the peridioles. In free basidiospores, the predominant compounds were 16:0, 16:1w5c, 18:1w9c, and 18:2w6,9c/18:0ante, at concentrations of 76, 46, 192, and 51 µg g-1 dry matter, respectively. Our results indicate that oleic acid is the major constituent of lipid reserves in Pisolithus sp. basidiospores. Further studies are being conducted to determine the factors that induce lipid mobilization during spore germination.
Resumo:
ABSTRACT Ectomycorrhizal fungi (EMF) may improve the adaptation of eucalypts saplings to field conditions and allow more efficient fertilizer use. The effectiveness of EMF inoculum application in promoting fungal colonization, plant growth, nutrient uptake, and the quality of rooted cuttings was evaluated forEucalyptus urophylla under commercial nursery conditions. For inoculated treatments, fertilization of the sapling substrate was reduced by 50 %. The experiment was carried out in a completely randomized design in a 4 × 4 factorial arrangement, wherein the factors were inoculum application rates of 0 (control), 5, 10, and 15 gel beads of calcium alginate containing the vegetative mycelium of Amanita muscaria, Elaphomyces antracinus, Pisolithus microcarpus, andScleroderma areolatum, plus a non-inoculated treatment without fertilization reduction in the substrate (commercial). Ectomycorrhizal fungi increased plant growth and fungal colonization as well as N and K uptake evenly. The best plant growth and fungal colonization were observed for the highest application rate. The greatest growth and fungal colonization and contents of P, N, and K were observed at the 10-bead rate. Plant inoculation with Amanita muscaria, Elaphomyces anthracinus, and Scleroderma areolatum increased P concentrations and contents in a differential manner. The Dickson Quality Index was not affected by the type of fungi or by inoculum application rates. Eucalypt rooted cuttings inoculated with ectomycorrhizal fungi and under half the amount of commercial fertilization had P, N, and K concentrations and contents greater than or equal to those of commercial plants and have high enough quality to be transplanted after 90 days.
Resumo:
Compatibility between Eucalyptus dunnii and the ectomycorrhizal fungi Hysterangium gardneri and Pisolithus sp. - from Eucalyptus spp. -, Rhizopogon nigrescens and Suillus cothurnatus - from Pinus spp.-, was studied in vitro. Pisolithus sp., H. gardneri and S. cothurnatus colonized the roots. Pisolithus sp. mycorrhizas presented mantle and Hartig net, while H. gardneri and S. cothurnatus mycorrhizas presented only mantle. S. cothurnatus increased phenolics level on roots. Pisolithus sp. and R. nigrescens decreased the level of these substances. The isolates from Eucalyptus seem to be more compatible towards E. dunnii than those from Pinus. The mechanisms involved could be related, at least in the cases of Pisolithus and Suillus, to the concentration of phenolics in roots.
Resumo:
The objective of this work was to evaluate the efficiency of ectomycorrhizal isolates on root colonization, phosphorus uptake and growth of Eucalyptus dunnii seedlings. Inocula of ten ectomycorrhizal isolates of Chondrogaster angustisporus, Hysterangium gardneri, Pisolithus spp., and Scleroderma spp. were aseptically produced in a peat-vermiculite mixture supplemented with liquid culture medium. Plants grew in a similar substrate supplemented with macro-and micro-nutrients; treatments were randomly distributed in a greenhouse. After three months, seedlings inoculated with three isolates - UFSC-Sc68 (Scleroderma sp.), UFSC-Ch163 (Chondrogaster angustisporus), and UFSC-Pt188 (Pisolithus microcarpus) - had a phosphorus shoot content and a shoot dry matter higher or equivalent to those of noninoculated controls which had been fertilized with a 16-fold phosphorus amount. These isolates were selected for new studies for establishing inoculum production techniques, in order to be applied in reforestation programmes under nursery and field conditions.
Resumo:
Eighteen Pisolithus basidiomes were collected from Eucalyptus plantations in the state of Minas Gerais, Brazil. These basidiomes were characterized morphologically and molecularly. The basidiomes varied in shape, color and size. One of them was found underground, indicating a hypogeous fungus. The main morphological distinctive characteristic was spore ornamentation, which distinguished two groups. One group with short and erect spines was identified as Pisolithus microcarpus, and the other with long and curved spines as Pisolithus marmoratus, after analyzing the cladogram obtained by phylogenetic relationship based on internal transcribed spacer (ITS) regions of the nuclear ribosomal DNA of these isolates.
Resumo:
The formation of ectomycorrhizas by monokaryotic and dikaryotic isolates of Pisolithus microcarpus (Cooke & Massee) G. Cunn. in Eucalyptus grandis W. Hill ex Maid. was studied by in vitro synthesis in Petri dishes. The formation of ectomycorrhizas was observed for all strains tested. Ectomycorrhizas formed by the monokaryotic strains presented a sheath of hyphae around the roots and a Hartig net limited to the epidermis layer, typical of the angiosperm ectomycorrhizas. Colonization rates, a measure of the number of ectomycorrhizas in relation to the total number of lateral root tips, varied from 23 to 62%. Some monokaryotic strains stimulated the formation of lateral roots, promoting increases of up to 109% above the control. The presence of some of the isolates in the in vitro synthesis medium stimulated the production of thicker lateral root tips. The dimensions of the lateral roots tips and ectomycorrhizas varied from one isolate to the next, indicating a variation in their capacity to provoke morphological changes in the host plant roots. The dikaryotic strain M5M11 presented higher values for lateral root yield, number of ectomycorrhizas, and colonization percentage than the corresponding monokaryotic strains, M5 and M11. This indicated the possibility of selecting compatible performing monokaryotic isolates for the yield of superior dikaryotic strains. The set of monokaryotic strains tested varied greatly in their ability to colonize E. grandis roots and cause secondary metabolism-related morphological changes in roots, providing a wealth of model systems for the study of genetic, physiological, and morphogenetic processes involved in Pisolithus-Eucalyptus ectomycorrhiza formation.
Resumo:
The ectomycorrhizal fungi have different tolerance to herbicides and may promote the survival and growth of the eucalypts tree. This study aimed to evaluate the tolerance of Pisolithus sp. isolates to glyphosate and isoxaflutole. The isolates evaluated were D3, D16, D17, Pt24 and UFVJM04. Glyphosate concentrations were: 0, 32, 63, 127 and 254 mg L-1 in liquid medium; 0, 32, 63, 127, 254, 507 and 1014 mg L-1 in solid medium. For isoxaflutole, the concentrations were 0, 295, 589, 1178 and 2355 mg L-1 for both media. Assays were independent for each herbicide and culture medium. The tolerance of isolates depended on the herbicide and its concentration in each type of culture medium. Pt24 was the most tolerant to glyphosate and the UFVJM04 to isoxaflutole. Glyphosate was more toxic to isolates of Pisolithus than isoxaflutole.
Resumo:
The benefit promoted by ectomycorrhizal depends on the interaction between symbionts and phosphorus (P) contents. Phosphorus effect on ectomycorrhizal formation and the effectiveness of these in promoting plant growth for fungal pre-selection were assessed under in vitro conditions. For P effect evaluation, Eucalyptus urophylla seedlings inoculated with four Pisolithus sp. isolates and others non-inoculated were grown on substrate containing 0.87, 1.16 and 1.72 mg P per plant. For evaluation of effectiveness and fungal pre-selection, other 30 isolates of Pisolithus sp., Pisolithus microcarpus ITA06 isolate, Amanita muscaria AM16 isolate, Scleroderma areolatum SC129 isolate were studied. D26 isolate promoted the highest plant heights for the three P doses, D51 at the lower dose and D72 at the intermediate dose. P doses did not influenced shoot fresh weight and fungal colonization. In the pre-selection of fungi, 14 isolates of Pisolithus sp., P. microcarpus ITA06 isolate and S. areolatum SC129isolate increased plant height and fresh weight. D82 isolate of Pisolithus sp. had effect singly on plant height while D17 and D58 on fresh weight. Of these, only D15, D17, D58 and ITA06 had typical ectomycorrhizae. The cultivation in vitro has shown adequate for pre-selection of ectomycorrhizal fungi. Colonization and benefits depend on species and isolate. D15, D17 and D58 of Pisolithus sp. and P. microcarpus isolate ITA06 are the most promising for nursery studies.