16 resultados para credit spreads

em Scielo Saúde Pública - SP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

El problema de la morosidad está cobrándose una gran importancia en los países desarrollados. En este trabajo realizamos un análisis de la capacidad predictiva de dos modelos paramétricos y uno no paramétrico abordando, en este último, el problema del sobreaprendizaje mediante la validación cruzada que, muy habitualmente, se obvia en este tipo de estudios. Además proponemos la distinción de tres tipos de solicitudes dependiendo de su probabilidad cumplimiento: conceder, no conceder (de forma automática), y dudoso y, por consiguiente, proceder a su estudio manual por parte del personal bancario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this paper was to evaluate the modifications in milkfat properties with the addition of sunflower oil (SO) and phytosterol esters (PE) and chemical interesterification. Fatty acid composition, softening point and consistency were determined. The saturation degree of milkfat decreased with the addition of SO and PE. Consequently, milkfat presented lower softening point and consistency. Chemical interesterification caused an increase in softening point due to the formation of higher amounts of trissaturated triacylglycerols with rearrangement. The incorporation of unsaturated fatty acids from SO and PE by milkfat triacylglycerols after chemical reaction caused linearization of consistency curves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper examines the Brazilian experience from the 'Economic Miracle' to the 'Lost Decade'. Its aim is to advance an alternative measurement of the flows of extraordinary wealth (i.e. ground-rent and net external credit) available for appropriation in the Brazilian economy and to asses their relevance in sustaining the process of accumulation of industrial capital. That is done in order to provide further and more accurate evidence to the claim that the evolution of the Brazilian process of capital accumulation has been extremely dependent on the evolution of those masses of extraordinary wealth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1996, Brazil adopted a worldwide income tax system for corporations. This system represents a fundamental change in how the Brazílian government treats multinational transactions and the tax minimizing strategies relevant to businesses. In this article, we describe the conceptual basis for worldwide tax systems and the problem of double taxation that they create. Responses to double taxation by both the governments and the priva te sector are considered. Namely, the imperfect mechanisms developed by Brazil and other countries for mitigating double taxation are analyzed. We ultimately focus on the strategies that companies utilize in order not only to avoid double texetion, but also to take advantage of tax havens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study is to investigate the contribution of psychological variables and scales suggested by Economic Psychology in predicting individuals’ default. Therefore, a sample of 555 individuals completed a self-completion questionnaire, which was composed of psychological variables and scales. By adopting the methodology of the logistic regression, the following psychological and behavioral characteristics were found associated with the group of individuals in default: a) negative dimensions related to money (suffering, inequality and conflict); b) high scores on the self-efficacy scale, probably indicating a greater degree of optimism and over-confidence; c) buyers classified as compulsive; d) individuals who consider it necessary to give gifts to children and friends on special dates, even though many people consider this a luxury; e) problems of self-control identified by individuals who drink an average of more than four glasses of alcoholic beverage a day.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The international tourism system has deeply undergone structural changes in the last decades which not remain outside the subsystem higher education in tourism, especially in the European case. This article has two objectives: firstly, describes the European higher education area and the objectives, skills and subjects taught in the main Spanish universities that offer higher education in tourism. On the other hand, in the light of knowledge that researchers' descriptive models, provide experience of the implementation of European credit and thorough a deeply review of the literature on the topic higher education in tourism, to propose strategies that will enable other tourism higher education systems approach to the European reality. These policy proposals are aimed at agents and elements from higher education in tourism subsystem and they specifically include: the institutions providing education in tourism, the curriculum, the teaching methods, teachers and students.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the first isolation of Dengue virus 4 (DENV-4) in the state of São Paulo, from two patients - one living in São José do Rio Preto and the other one in Paulo de Faria, both cities located in the Northwest region of the state. The virus isolations were accomplished in the clone C6/36 Aedes albopictus cell line, followed by indirect immunofluorescence assays, performed with type-specific monoclonal antibodies that showed positive reactions for DENV-4. The results were confirmed by Nested RT-PCR and Real-Time RT-PCR assays. The introduction of DENV-4 in a country that already has to deal with the transmission of three other serotypes increases the possibility of the occurrence of more severe cases of the disease. The importance of early detection of dengue cases, before the virus spreads and major outbreaks occur, should be emphasized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals initially with the role of mineral fertilizers in increasing agricultural production: the relationship between the two variables is illustrated within global, regional national and local contexts. The pattern and trends in fertilizer usage in Brazil are presented next, namely: increase in consumption in the period 1950/72; regional distribution; consumption as related to crops and cultivated land. It is shown that in less than a quarter or century fertilizer use has increased in the country nearly 12 fold, whereas world consumption was raised 7 fold, thus exceeding estimates based in several criteria. Steps taken to secure the raise in fertilizer consumption above the historical trend are discussed: research experience for outlining fertilization recomendations; the transfer of the knowledge to the farmer by the extension work both official and private; the credit policy and special incentives for the purchase of fertilizer; the national policy for minumum proces of agricultural products; the implantation of a national fertilizer industry. It is considered that the Brazilian experience adapted to similar local conditions in other developing countries, presents a possibility for achieving beneficial results without inflationary reflexes in the economy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(1) In the period 1965/77 fertilizer consumption in Brazil increased nearly fifteen foild from circa 200,000 tons of N + P2O5 + K2O to 3 million tons. During the fifteen years extending from 1950 to 1964 usage of the primary macronutrients was raised by a factor of 2 only. (2) Several explanations are given for the remarkable increase, namely: an experimental background which supplied data for recommendations of rates, time and type of application; a convenient governmental policy for minimum prices and rural credit; capacity of the industry to meet the demand of the fertilizer market; an adequate mechanism for the diffusion of the practice of fertilizer use to the farmer. (3) The extension work, which has caused a permanent change in the aptitude towards fertilization, was carried out in the traditional way by salesmen supported by a technical staff, as well as by agronomists of the official services. (4) Two new programs were started and conducted in a rather short time, both putting emphasis on the relatively new technology of fertilizer use. (5) The first program, conducted in the Southern part of the country, extended lab and green house work supplemented by a few field trials to small land owners - the so called "operação tatú" (operation armadillo). (6) The seconde program, covering a larger problem area in the Northeast and in Central Brazil, began directly in field as thousands of demonstrations and simple experiments with the participation of local people whose involvement was essential for the success of the initiative; in this case the official extension services, both foreign and national sources of funds, and universities did participate under the leadership of the Brazilian Association for the Diffusion of Fertilizers (ANDA). (7) It is felt that the Brazilian experience gained thereof could be useful to other countries under similar conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Brazil, surveillance studies on antiretroviral drug resistance among drug-naïve and treatment-experienced patients have focused primarily on patients living in large urban centers. As the epidemic spreads towards small municipalities and the innermost parts of the country, it will be essential to monitor the prevalence of antiretroviral drug resistance in these areas. We report the first survey on the prevalence of antiretroviral drug resistance in a small Brazilian municipality. Between July 1999 and March 2005, 72 adult human immunodeficiency virus type-1(HIV-1)-infected patients received care at the Municipal HIV/AIDS Program of the small, southeastern municipality of Miracema, state of Rio de Janeiro. A genotyping study of antiretroviral drug resistance was performed in 54 patients. Among 27 samples from treatment-experienced patients, 9 (33.3%) harbored strains with reduced drug susceptibility. Among these, 6 had reduced susceptibility to reverse transcriptase (RT) inhibitors and 3 to both RT and protease inhibitors. No primary antiretroviral drug resistance was recorded among 27 drug-naïve subjects. The relatively low prevalence of resistance mutations in the Miracema cohort argues against the concern that resource-poor settings should not implement widespread accessibility to standard of care antiretroviral combinations due to the possibility of sub-optimal adherence leading to the emergence and spread of drug-resistant strains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytogenetics of triatomines have been a valuable biological tool for the study of evolution, taxonomy, and epidemiology of these vectors of Trypanosoma cruzi. Here we present a single microtube protocol that combines micro-centrifugation and micro-spreading, allowing high quality cytogenetic preparations from male gonadal material of Rhodnius prolixus and Triatoma lecticularia. The amount of cellular scattering can be modulated, which can be useful if small aggregates of synchronous cells are desired. Moreover, a higher number of slides per gonad can be obtained with fully flattened clean chromosomal spreads with minimum overlaps, optimal for classical and modern molecular cytogenetic analyses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chagas disease began millions of years ago as an enzootic disease of wild animals and started to be transmitted to man accidentally in the form of an anthropozoonosis when man invaded wild ecotopes. Endemic Chagas disease became established as a zoonosis over the last 200-300 years through forest clearance for agriculture and livestock rearing and adaptation of triatomines to domestic environments and to man and domestic animals as a food source. It is estimated that 15 to 16 million people are infected with Trypanosoma cruzi in Latin America and 75 to 90 million people are exposed to infection. When T. cruzi is transmitted to man through the feces of triatomines, at bite sites or in mucosa, through blood transfusion or orally through contaminated food, it invades the bloodstream and lymphatic system and becomes established in the muscle and cardiac tissue, the digestive system and phagocytic cells. This causes inflammatory lesions and immune responses, particularly mediated by CD4+, CD8+, interleukin-2 (IL) and IL-4, with cell and neuron destruction and fibrosis, and leads to blockage of the cardiac conduction system, arrhythmia, cardiac insufficiency, aperistalsis, and dilatation of hollow viscera, particularly the esophagus and colon. T. cruzi may also be transmitted from mother to child across the placenta and through the birth canal, thus causing abortion, prematurity, and organic lesions in the fetus. In immunosuppressed individuals, T. cruzi infection may become reactivated such that it spreads as a severe disease causing diffuse myocarditis and lesions of the central nervous system. Chagas disease is characterized by an acute phase with or without symptoms, and with entry point signs (inoculation chagoma or Romaña's sign), fever, adenomegaly, hepatosplenomegaly, and evident parasitemia, and an indeterminate chronic phase (asymptomatic, with normal results from electrocardiogram and x-ray of the heart, esophagus, and colon) or with a cardiac, digestive or cardiac-digestive form. There is great regional variation in the morbidity due to Chagas disease, and severe cardiac or digestive forms may occur in 10 to 50% of the cases, or the indeterminate form in the other asymptomatic cases, but with positive serology. Several acute cases have been reported from Amazon region most of them by T. cruzi I, Z3, and a hybrid ZI/Z3. We conclude this article presenting the ten top Chagas disease needs for the near future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary culture of intestinal epithelial cells from domestic cats is an efficient cellular model to study the enteric cycle of Toxoplasma gondii in a definitive host. The parasite-host cell ratio can be pointed out as a decisive factor that determines the intracellular fate of bradyzoites forms. The development of the syncytial-like forms of T. gondii was observed using the 1:20 bradyzoite-host cell ratio, resulting in similar forms described in in vivo systems. This alternative study potentially opens up the field for investigation into the molecular aspects of this interaction. This can contribute to the development of new strategies for intervention of a main route by which toxoplasmosis spreads.