3 resultados para application mode
em Scielo Saúde Pública - SP
Resumo:
An LC-MS/MS method has been developed for the determination of efavirenz (EFZ) in human plasma using hydrochlorothiazide as internal standard (I.S.). An ESI negative mode with multiple reaction-monitoring was used monitoring the transitions m/z 313.88→69.24 (EFZ) and 296.02→204.76 (I.S.). Samples were extracted using liquid-liquid extraction. The total run time was 2.0 min. The separation was achieved with HPLC-RP using a monolithic column. The assay was linear in the concentration range of 100 - 5000 ng mL-1. The mean recovery was 83%. Intra- and inter-day precision were < 9.5% and < 8.9%, respectively and accuracy was in the range ± 8.33%. The method was successfully applied to a bioequivalence study.
Resumo:
Chlorophyll fluorescence is currently used as a rapid diagnostic and nondestructive method to detect and quantify damage on the photosynthetic apparatus of leaves on weeds, crops and ornamental/coniferous trees in response to both environmental stress and herbicides. This study aimed to evaluate chlorophyll fluorescence in guanandi plants (Calophyllum brasiliense) after application of different postemergence herbicides. The experiment was performed in a completely randomized design, with six treatments (control, bentazon, sulfentrazone, isoxaflutole, atrazine and glyphosate) and five replications. The herbicide treatments were applied with a stationary sprayer, and electron transport rate (ETR) was subsequently analyzed with OS5p Multi-Mode Chlorophyll Fluorometer. In the monitored period, guanandi plants subjected to atrazine showed higher sensitivity to chlorophyll fluorescence than the other treatments. Although bentazon is a photosystem II inhibitor, it showed no major changes in electron transport for the studied species and in the monitored period. In summary, ETR is a good parameter to evaluate the effect of some herbicides on Calophyllum brasiliense plants.
Resumo:
The Failure Mode and Effect Analysis (FMEA) was applied for risk assessment of confectionary manufacturing, in whichthe traditional methods and equipment were intensively used in the production. Potential failure modes and effects as well as their possible causes were identified in the process flow. Processing stages that involve intensive handling of food by workers had the highest risk priority numbers (RPN = 216 and 189), followed by chemical contamination risks in different stages of the process. The application of corrective actions substantially reduced the RPN (risk priority number) values. Therefore, the implementation of FMEA (The Failure Mode and Effect Analysis) model in confectionary manufacturing improved the safety and quality of the final products.