64 resultados para Sharp

em Scielo Saúde Pública - SP


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to obtain evidence on the size of the impact of the Hong Kong/68 variant of influenza A2 virus on the population of São Paulo, Brazil, serum samples taken in 1967 before this variant appeared and during successive years after it appeared were examined for their antibody content. Haemagglutination-inhibition tests performed on a total of 2726 serum samples from adults showed a sharp decrease in 1969 of the proportion of sera without antibody to the Hong Kong/68 variant and a corresponding mercase in the proportion with high titres. It was concluded that about three-quarters of the adult population became infected at some time after the variant appeared, the majority in the first year of prevalence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The epidemiology and control of schistosomiasis mansoni in the Municipality of Pedro de Toledo (State of S. Paulo, Brazil) since 1980, has been studied. In 1980 the prevalence evaluated by stool exams (Kato-Katz method) was 22.8% and no statistical difference at 5.0% level was observed between rural and urban zones. The intensity of infection was low (58.5 eggs/g of faeces); the highest prevalence and intensity of infection rates were observed within the group of from 5 to 29 years of age, respectively. The transmission of schistosomiasis usually occurred during leisure time. The majority of the carriers of the parasite were asymptomatic. Of the B. tenagophila examined only 0.4% were found to be infected. The control programme has been intensified from 1981 on resulting in a sharp decrease in the prevalence from 22.8% in 1980 to 6% at the present time. This result shows that, in spite of the control programme there is a residual human prevalence. A beginning has been made on the investigation into the possible causes of this residual prevalence (6.0% was maintained through out 1987).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To assess the effect of a health promotion program on cardiometabolic risk profile in Japanese-Brazilians. METHODS: A total of 466 subjects from a study on diabetes prevalence conducted in the city of Bauru, southeastern Brazil, in 2000 completed a 1-year intervention program (2005-2006) based on healthy diet counseling and physical activity. Changes in blood pressure and metabolic parameters in the 2005-2006 period were compared with annual changes in these same variables in the 2000-2005 period. RESULTS: During the intervention, there were greater annual reductions in mean (SD) waist circumference [-0.5(3.8) vs. 1.2(1.2) cm per year, p<0.001], systolic blood pressure [-4.6(17.9) vs. 1.8(4.3) mmHg per year, p<0.001], 2-hour plasma glucose [-1.2(2.1) vs. -0.2(0.6) mmol/L per year, p<0.001], LDL-cholesterol [-0.3(0.9) vs. -0.1(0.2) mmol/L per year, p<0.001] and Framingham coronary heart disease risk score [-0.25(3.03) vs. 0.11(0.66) per year, p=0.02] but not in triglycerides [0.2(1.6) vs. 0.1(0.42) mmol/L per year, p<0.001], and fasting insulin level [1.2(5.8) vs. -0.7(2.2) IU/mL per year, p<0.001] compared with the pre-intervention period. Significant reductions in the prevalence of impaired fasting glucose/impaired glucose tolerance and diabetes were seen during the intervention (from 58.4% to 35.4%, p<0.001; and from 30.1% to 21.7%, p= 0.004, respectively). CONCLUSIONS: A one-year community-based health promotion program brings cardiometabolic benefits in a high-risk population of Japanese-Brazilians.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rapid nutrition transition occurring in Latin America has resulted in a sharp increase of childhood overweight and obesity. Recent evidence has shown that food and beverage advertising has a great influence on children&#8217;s eating behavior. This population has become a key target market for the ultra-processed foods and beverages industry, which is marketing products in an aggressive way. Evidence shows that Latin American countries have poor regulation of ultra-processed foods and beverages advertising, where the discourse of self-regulation still prevails over statutory regulations. The following commentary explores how advertising might play an important role in developing unhealthy dietary patterns and obesity in Latin American children, as well as the urgent need for government action and the involvement of civil society to tackle this public health issue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The occurrence of different viruses in nasopharyngeal secretions from children less than 5 years old with acute respiratory infections (ARI) was investigated over a period of 4 years (1982-1985) in Rio de Janeiro. Of the viruses known to be associated with ARI, all but influenza C and parainfluenza types 1, 2 and 4 were found. Viruses were found more frequently in children attending emergency or pediatric wards than in outpatients. This was clearly related to the high incidence of respiratory syncytial virus (RSV) in the more severe cases of ARI. RSV positive specimens appeared mainly during the fall, over four consecutive years, showing a clear seasonal ocurrence of this virus. Emergency wards provide the best source of data for RSV surveillance, showing sharp increase in the number of positive cases coinciding with increased incidence of ARI cases. Adenovirus were the second most frequent viruses isolated and among these serotypes 1,2 and 7 were predominant. Influenza virus and parainfluenza virus type 3 were next in frequency. Influenza A virus were isolated with equal frequency in outpatient departments, emergency and pediatric wards. Influenza B was more frequent among outpatients. Parainfluenza type 3 caused outbreaks in the shanty town population annually during the late winter or spring and were isolated mainly from outpatients. Herpesvirus, enterovi-rus and rhinovirus were found less frequently. Other viruses than RSV and parainfluenza type 3 did not show a clear seasonal incidence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authors developed a comparative study of the various methods of assessment of immune response to Hepatitis B vaccine. Eighty-six health care professionals underwent a vaccination programme with three doses of plasma-derived vaccine against Hepatitis B (H-B-Vax, Merck, Sharp &amp; Dohme) given intra-muscularly. Assessment of immune response was carried out three months after the end of the programme, by radioimmunoassay (RIA) and enzymeimmunoassay (EIA). The results showed that the semi-quantitative assessment of Anti-HBs antibodies by RIA or EIA was perfectly comparable to the reference method (quantitative determination of antibodies by RIA). In view of these findings, the authors suggest a standardization of assessment of immune response to the vaccine, thus permitting correct planning of booster doses and easier comparison between different studies

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hamster check pouch is an invagination of oral mucosa, characterized histologically as skin-like. In this paper we describe anatomical, histological and embriological features of the pouch and coment on the pouch as an immunologically privileged site since it lacks lymphatic drainage and has few Langerhans cells. We present the review from literature and our observations after inoculation in the pouch of mycobacteriae (BCG, Mycobacterium tuberculosis and Mycobacterium leprae) and a fungus (Paracoccidioides brasiliensis). Lesions in the pouch were granulomatous but smaller and long lasting; even granulomatous, the reaction was inefficient to control the proliferation of agents compared with inoculation in other sites, except for BCG. Appearance of immunity was also delayed or absent and, when it was detected, a sharp decrease in number of agents in pouch lesions was observed. These observations make the pouch an interesting site for the study of the role of immune system in infeccious diseases and in granuloma formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study was designed to further assess the validity of the cytological description of morphological lesions said to be related to Papillomavirus (HPV) infections in senior women. The casuistic comprised 196 cervical smears from a group of women with no clinical or morphological evidence of neoplasia, collected simultaneously with samples submitted to detection of HPV DNA by PCR in a previous study. Three experienced cytologists studied each slide in two different conditions, with an interval of 20 months between them. The first approach was performed under routine laboratory standards, whereas the second was guided by a list of 16 well-defined parameters indicative of HPV-related cytological lesions. When suspicious cases of HPV-related alterations were grouped with positive cases, they showed on average: sensitivity of 25.5%, specificity of 84.4% and positive predictive value (PPV) of 26.8%. When suspicious cases were grouped with negative cases, sensitivity decreased, whereas specificity and PPV increased, as expected. In the second reading, which followed a "guide-list", a decrease in sensitivity was observed, contrasting with a sharp increase of positive predictive value. Among the 16 cytomorphological criteria tested, "koilocytosis", "mild koilocytosis" and "condylomatous parabasal cells" yielded the best predictive value for HPV DNA detection by PCR. In conclusion, despite the low sensitivity, cytopathologic assessment of cervico-vaginal smears leads to a highly specific diagnosis of HPV infection in menopausal women, with PPV of 91.0% when directed by a guide-list of well-defined morphologic criteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The morphological identification of Trypanosoma cruzi is currently considered to have a high specificity, but its sensitivity, which depends on the volume of the sample examined, is rather low. Trypanosome developmental stages suspended in blood, reduviid feces, and culture media are routinely searched for by means of fresh film examination (about 2 µL). High speed centrifugation of blood samples separates the buffy coat, where most trypomastigotes concentrate. As the parasites are transparent and colorless, their detection is mostly dependent on their motility. The fluorescent vital stain acridine orange has been used to enhance image contrast, as exemplified by the QBC (Quantitative Buffy Coat) technique. Staining blood, buffy coat, reduviid feces, and culture media samples with methylene blue (also a vital dye) is a means of producing sharp, well contrasted images of motile or non-motile T. cruzi developmental stages, only standard laboratory microscopes being required. Slides previously coated with a thin layer of methylene blue are used to stain fresh blood films. Photomicrographs exemplify the results of methylene blue staining applied to living and fixed parasites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cross-sectional study was conducted to assess the frequencies and characteristics of occupational exposures among medical and nursing students at a Brazilian public university, in addition to their prevention and post-exposure behavior. During the second semester of 2010, a self-administered semi-structured questionnaire was completed by 253/320 (79.1%) medical students of the clinical course and 149/200 (74.5%) nursing students who were already performing practical activities. Among medical students, 53 (20.9%) suffered 73 injuries, which mainly occurred while performing extra-curricular activities (32.9%), with cutting and piercing objects (56.2%), in the emergency room (39.7%), and as a result of lack of technical preparation or distraction (54.8%). Among nursing students, 27 (18.1%) suffered 37 injuries, which mainly occurred with hollow needles (67.6%) in the operating room or wards (72.2%), and as a result of lack of technical preparation or distraction (62.1%). Among medical and nursing students, respectively, 96.4% and 48% were dissatisfied with the instructions on previously received exposure prevention; 48% and 18% did not always use personal protective equipment; 67.6% and 16.8% recapped used needles; 49.3% and 35.1% did not bother to find out the source patient's serological results post-exposure; and 1.4% and 18.9% officially reported injuries. In conclusion, this study found high frequencies of exposures among the assessed students, inadequate practices in prevention and post-exposure, and, consequently, the need for training in &#8220;standard precautions&#8221; to prevent such exposures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oogram studies have been carried out on mice, hamsters, and Cebus morikeys experimentally infected with Schistosoma mansoni and treated with trichlorphone (0,0-dimethyl 1-hydroxy-2, 2, 2-trichloroethylphosphonate). In mice, despite a slight hepatic shift of schistosomes, all animais presented oogram changes when dosed, per os, at the schedules of 200, and 100 mg/kg/day à 7. In hamsters, antischistosomal activity could be detected only at toxic leveis. In monkeys, trichlorphone showed insignificant action even after oral administration of 30 mg/kg/day for 10 consecutive days. In 5 volunteers, a sharp drop in cholinesterase plasma level was observed 24 hours after a single oral dose of 7.5 mg/kg. However, cholinesterase levels returned to the initial values within a period of 11 to 27 days. Trichlorphone was then administered to 12 schistosome patients (7.5 mg/kg/day, every fort- night, à 5). One month after therapy, interruption of egg laying was observed in 6 patients. Late parasitological control showed that all treated patients continued to pass viable S. mansoni eggs with their stools.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A survey was done to determine the most common hospital accidents with biologically contaminated material among students at the Medical College of the Federal University of Minas Gerais. Six hundred and ninety-four students (between fifth and twelfth semesters of the college course) answered the questionnaire individually. Three-hundred and forty-nine accidents were reported. The accident rate was found to be 33.9% in the third semester of the course, and increased over time, reaching 52.3% in the last semester. Sixty-three percent of the accidents were needlestick or sharp object injuries; 18.3% mucous membrane exposure; 16.6% were on the skin, and 1.7% were simultaneously on the skin and mucous membrane exposure. The contaminating substances were: blood (88.3%), vaginal secretion (1.7%), and others (9.1%). The parts of the body most frequently affected were: hands (67%), eyes (18.9%), mouth (1.7%), and others (6.3%). The procedures being performed when the accidents occurred were: suture (34.1%), applying anesthesia (16.6%), assisting surgery (8.9%), disposing of needles (8.6%), assisting delivery (6.3%), and others (25.9%). Forty-nine percent of those involved reported the accident to the accident control department. Of these 29.2% did not receive adequate medical assistance. Eight percent of those involved used antiretroviral drugs and of these 86% discontinued the treatment on receiving the Elisa method applied to the patient (HIV-negative); 6.4% discontinued the treatment due to its side-effects; and 16% completed the treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction We attempted to supplement traditional insecticide spraying by treating peridomiciliar food sources with a powder formulation. Methods Two groups of houses were treated with deltamethrin suspension concentrate (SC), one of which had its primary peridomestic food sources treated with deltamethrin 2P. Results Triatoma brasiliensis was the most commonly captured triatomine. Birds, dogs and rodents were the major food sources identified by the precipitin reaction; 554 domestic animals received powder treatment. A sharp reduction in infestation rates was observed in the two groups up to 360 days after spraying. Conclusion The combination SC + 2P did not improve the control of triatomines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modeling clays have been used in several ecological experiments and have proved to be an important tool to variables control. The objective of our study was to determine if fruit color in isolated and grouped displays influences the fruit selection by birds in the field using artificial fruits. Data were collected in six plots distributed homogeneously in 3 km long trails with a minimum distance of 0.5 km. We used a paired experimental design to establish our experiments, so that all treatments were available to the local bird community in each plot. Overall, red was more pecked than brown and white. Isolated red and brown displays were significantly more pecked than others display. Even though our study was conducted in small spatial scales, artificial fruits appeared to be efficient in register fruit consumption attempts by bird. Although inconclusive about selective forces that sharp the dynamics of fruit color polymorphisms and choice by frugivorous birds, our findings corroborate recent studies wherein birds showed preferences by high- over low-contrast fruit signals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.