52 resultados para Potential applications
em Scielo Saúde Pública - SP
Resumo:
Nanoscience and nanotechnology are new frontiers of this century. Their application to the agriculture and food sectors is relatively recent compared with their use in drug delivery and pharmaceuticals. Smart delivery of nutrients, bioseparation of proteins, rapid sampling of biological and chemical contaminants, and nanoencapsulation of nutraceuticals are some of the emerging topics of nanotechnology for food and agriculture. In this review, some applications of nanotechnology in agro-food sector are discussed.
Resumo:
OBJECTIVE: One of the most exciting potential applications of percutaneous therapy is the treatment of abdominal aneurysms. METHODS: Of 230 patients treated with a self-expanding polyester-lined stent-graft for different aortic pathologies at our institution, we selected 80 abdominal aneurysm cases undergoing treatment (from May 1997 to December 2002). The stent was introduced through the femoral artery, in the hemodynamic laboratory, with the patient under general anesthesia, with systemic heparinization, and induced hypotension. RESULTS: The procedure was successful in 70 (92.9%) cases; 10 patients with exclusion of abdominal aortic aneurysms were documented immediately within the hemodynamic room and 5 patients persisted with a residual leak. Two surgical conversions were necessary. Additional stent-grafts had to be inserted in 3 (3.7%) cases. In the follow-up, 91.4% of patients were alive at a mean follow-up of 15.8 months. CONCLUSION: We believe that stent-grafts are an important tool in improving the treatment of abdominal aneurysms, and this new policy may change the conventional medical management of these patients.
Resumo:
ABSTRACT Increasing attention has been given, over the past decades, to the production of exopolysaccharides (EPS) from rhizobia, due to their various biotechnological applications. Overall characterization of biopolymers involves evaluation of their chemical, physical, and biological properties; this evaluation is a key factor in understanding their behavior in different environments, which enables researchers to foresee their potential applications. Our focus was to study the EPS produced by Mesorhizobium huakuii LMG14107, M. loti LMG6125, M. plurifarium LMG11892,Rhizobium giardini bv. giardiniH152T, R. mongolense LMG19141, andSinorhizobium (= Ensifer)kostiense LMG19227 in a RDM medium with glycerol as a carbon source. These biopolymers were isolated and characterized by reversed-phase high-performance liquid chromatography (RP-HPLC), Fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR) spectroscopies. Maximum exopolysaccharide production was 3.10, 2.72, and 2.50 g L-1for the strains LMG6125, LMG19227, and LMG19141, respectively. The purified EPS revealed prominent functional reactive groups, such as hydroxyl and carboxylic, which correspond to a typical heteropolysaccharide. The EPS are composed primarily of galactose and glucose. Minor components found were rhamnose, glucuronic acid, and galacturonic acid. Indeed, from the results of techniques applied in this study, it can be noted that the EPS are species-specific heteropolysaccharide polymers composed of common sugars that are substituted by non-carbohydrate moieties. In addition, analysis of these results indicates that rhizobial EPS can be classified into five groups based on ester type, as determined from the 13C NMR spectra. Knowledge of the EPS composition now facilitates further investigations relating polysaccharide structure and dynamics to rheological properties.
Resumo:
This paper describes a low-cost microprocessed instrument for in situ evaluating soil temperature profile ranging from -20.0°C to 99.9°C, and recording soil temperature data at eight depths from 2 to 128 cm. Of great importance in agriculture, soil temperature affects plant growth directly, and nutrient uptake as well as indirectly in soil water and gas flow, soil structure and nutrient availability. The developed instrument has potential applications in the soil science, when temperature monitoring is required. Results show that the instrument with its individual sensors guarantees ±0.25°C accuracy and 0.1°C resolution, making possible localized management changes within decision support systems. The instrument, based on complementary metal oxide semiconductor devices as well as thermocouples, operates in either automatic or non-automatic mode.
Resumo:
The layered double hydroxides, known as anionic clays and represented by the general formula [M2+1-x M3+x (OH) 2]x+ Am-x/m·nH 2O, are a group of materials which are of much interest currently. They present a variety of potential applications as adsorbents, catalysts and catalyst support, ion-exchangers, antacids and as a polymer stabilizer. It is possible to obtain a broad variety of layered double hydroxides (LDHs), depending on the identity and ratio of the cations M2+ and M3+, as well as the interlamelar anion. The aim of this review is to give out some information about this class of materials, concerning to the synthesis, characterization, properties and applications.
Resumo:
This review discusses the methods used to prepare conductive polymers in confined environments. This spatial restriction causes formation of defect-free polymer chains in the interlayer as porous cavities of inorganic hosts. The properties of the different composites obtained are a synergist combination of the characteristics of the inorganic host and the polymer. This opens new perspectives for the preparation of these materials and widens its potential applications.
Resumo:
Supramolecular chemistry is expected to keep a high developing pace in the next years, giving support to the advancement of molecular devices and nanotechnology. In this sense, porphyrins and their analogues should play a significant role as a consequence of their catalytic, electrocatalytic, photochemical and photoelectrochemical properties. In this review we focused on our own strategy based on coordination chemistry for the design and build-up of supermolecules and supramolecular structures constituted by polynuclear porphyrins and metalloporphyrins. Included are also their properties and potential applications.
Resumo:
Polymeric nanoparticle systems such as nanocapsules and nanospheres present potential applications for the administration of therapeutic molecules. The physico-chemical characteristics of nanoparticle suspensions are important pre-requisites of the success of any dosage form development. The purpose of this review is to present the state of the art regarding the physico-chemical characterization of these drug carriers, in terms of the particle size distribution, the morphology, the polymer molecular weight, the surface charge, the drug content and the in vitro drug release profiles. Part of the review is devoted to the description of the techniques to improve the stability of colloidal systems.
Resumo:
Associating the well known advantages of hybrid materials to the wide potential of nanomaterials, the new and featuring class of polymer nanocomposites turned into one of the most intensively researched areas. This review highlights recent developments in the field of the synthesis of polymer based nanocomposites. Important issues related to the surface modification of fillers, in order to promote the compatibility between the inorganic/organic components, are also reported. The enhancement of the physical properties and the potential applications of polymer nanocomposites are considered in typical examples, given for each synthetic method described.
Resumo:
The preparation and application of organic-inorganic hybrid materials are under fast development and constitute an interesting research topic on account of the versatility and wide range of applications offered by these materials. These properties can be achieved due to the mixture of the components at the molecular level. The present review covers the state of the art, the most useful preparation routes and the potential applications of these materials.
Resumo:
The structural characterization of molecules used in the sterilization of blood for transfusions, such as crystal violet (CV), is relevant for understanding the action of these prophylactic drugs. The characterization is feasible by surface enhanced resonance Raman spectroscopy (SERRS) of CV in solution or on surfaces. The limit of detection of CV by SERRS, in the presence of colloidal particles, using 514.5 nm as excitation radiation, was found to be around 1 ppb. The characterization of CV was also made by SERS, by using different active-particles-containing substrates, proving the versatility of this technique for the study of such structures. The results suggest that the controlled production of highly efficient SERS-active substrates may allow qualitative and quantitative analysis, with high sensitivity, with potential applications in medical and environmental fields.
Resumo:
The fact that alpha- and beta-chitin adopt different arrays in the solid state is explored to emphasize their different properties and distinct spectral characteristics and X ray diffraction patterns. The methods for their extraction from the biomass in view of the preservation of their native structures and aiming to fulfill the claims of purity and uniformity for potential applications are discussed. The different arrays adopted by alpha- and beta-chitin also result in distinct reactivities toward the deacetylation reaction. Thus, the deacetylation of beta-chitin is more efficient owing to the better accessibility to amide groups due to the lower crystallinity of this polymorph.
Resumo:
Cyclodextrins (CDs) are cyclic oligosaccharides comprised of six or more glucose units connected by alpha-1,4 bonds. They have hydrophobic cavities with a hydrophilic exterior, and are versatile receptors for a variety of substrates. This ability allows them to be applied in many fields, as distinct as supramolecular chemistry, nanotechnology, pharmaceuticals, green chemistry, agrochemicals, analytical chemistry, toiletries, foods, and cosmetics. This review summarizes several aspects related to the physico-chemical properties of CDs and discusses their potential applications illustrated by recent examples. The prospects for their use in several areas are also described.
Resumo:
Rare earth ion doped solid state materials are the most important active media of near-infrared and visible lasers and other photonic devices. In these ions, the occurrence of Excited State Absorptions (ESA), from long lived electronic levels, is commonplace. Since ESA can deeply affect the efficiencies of the rare earth emissions, evaluation of these transitions cross sections is of greatest importance in predicting the potential applications of a given material. In this paper a detailed description of the pump-probe technique for ESA measurements is presented, with a review of several examples of applications in Nd3+, Tm3+ and Er3+ doped materials.
Resumo:
Cutinases (EC 3.1.1.74) are also known as cutin hidrolases. These enzymes share catalytic properties of lipases and esterases, presenting a unique feature of being active regardless the presence of an oil-water interface, making them interesting as biocatalysts in several industrial processes involving hydrolysis, esterification and trans-esterification reactions. They are also active in different reaction media, allowing their applications in different areas such as food industry, cosmetics, fine chemicals, pesticide and insecticide degradation, treatment and laundry of fiber textiles and polymer chemistry. The present review describes the characteristics, potential applications and new perspectives for these enzymes.