22 resultados para New Technologies
em Scielo Saúde Pública - SP
Resumo:
Saving our science from ourselves: the plight of biological classification. Biological classification ( nomenclature, taxonomy, and systematics) is being sold short. The desire for new technologies, faster and cheaper taxonomic descriptions, identifications, and revisions is symptomatic of a lack of appreciation and understanding of classification. The problem of gadget-driven science, a lack of best practice and the inability to accept classification as a descriptive and empirical science are discussed. The worst cases scenario is a future in which classifications are purely artificial and uninformative.
Resumo:
Nitrogen fertilization is a major component of the cost of agricultural production, due to the high cost and low efficiency of fertilizers. In the case of urea, the low efficiency is mainly due to losses by volatilization, which are more pronounced in cultivation systems in which plant residues are left on the soil. The objective of this work was to compare the influence of urea coated with sulfur or boric acid and copper sulfate with conventional N fertilizers on N volatilization losses in sugar cane harvested after stubble burning. The sources urea, sulfur-coated urea, urea coated with boric acid and copper sulfate, as well as nitrate and ammonium sulfate, were tested at amounts containing N rates of 120 kg ha-1 N. The integration of new technologies in urea fertilization can reduce N losses by volatilization. These losses were most reduced when using nitrate and ammonium sulfate. The application of a readily acidified substance (boric acid) to urea was more efficient in reducing volatilization losses and nutrient removal by sugar cane than that of a substance with gradual acidification (elemental sulfur).
Resumo:
ABSTRACT Soil tillage that maintains the productivity of sugarcane plantations, providing an area for the root development and without traffic on crop rows, has given rise to new technologies in rural areas. The purpose of this study was to evaluate the soil physical properties in two sugarcane plantations, one of which was prepared with deep tilling and the other with conventional tillage. The experiment was conducted in Lençóis Paulista, São Paulo State. Soil penetration resistance and relative density were analyzed. The cone index was lower in deep-tilled soil without traffic in all layers, than in deep-tilled soil with traffic and in conventional tillage. In both tillage treatments, the relative density values were acceptable in the 0.00-0.15 m soil layer, but considered detrimental for sugarcane development in the 0.15-0.30 and 0.30-0.45 m layers.
Resumo:
This work was carried out to show the current situation of the temperate fruit crops in São Paulo state, Brazil, with an emphasis on grapes, peaches, apples, plums, nectarines and pears crops. Current economic data of crops, major growing regions, main cultivars produced, as well as the new technologies generated by research are presented. Regarding the grape crop, a decrease in the national production as well as in the major growing states was observed. The main grapes growing centers in São Paulo state are presented, highlighting its peculiarities regarding cultivars, cultural crop management and current researches. A trend has been observed toward increasing Niagara Rosada grape growing area rather than the fine table grape cultivars. It was also observed the adoption of cultural practices, aiming to increase productivity, to improve the fruits quality and to reduce manpower necessity. In terms of stone fruits, peaches are the most widely cultivated in São Paulo state, followed by plums and nectarines. Both for stone fruits crop and for apples and pears crops, statistics and comments are presented on the crops evolution as well as the current researches results and the requirements of these fruit crops in São Paulo state, Brazil.
Resumo:
In Chile, the cherry tree has been one of the fastest growing and most profitable crops in the last ten years. However, increasing production costs, the scarcity of hired labor, and unfavorable exchange rates have reduced the productivity and competitiveness of the Chilean fruit sector. The aim of this article is to evaluate the harvest labor quality in cherry growing in Chile through the use of productivity indicators. A harvest labor evaluation system (HLES) was designed and four indicators were measured: Average Weight of Harvested Box, Average Daily Production per Worker, Percent of Export Fruit, and Percent of Fruit Discarded. Significant differences werefound between the 2010/11 season (with the HLES implementation) and the previous seasons without HLES. The average worker yield, average weight of a filled box, and fruit quality improved, while the amount of discarded fruit decreased. Hired labor management in agriculture is crucial for improving the productivity of the fresh fruit export producers. The use of HLES and the adoption of new technologies could help to solve the competitiveness problem in the Chilean fruit sector.
Resumo:
The application of biocatalysis is a promising field related to new technologies for organic synthesis. The development of immobilization techniques is very important due to the multiple or repetitive use of a single batch of enzymes and the ability to stop the reaction rapidly, at any stage, by removing the enzymes. In most cases, after immobilization, enzymes and microorganisms maintain or even increase their activity and stability. This work presents an overview of the common methods for lipase immobilization in polymers and applications of these systems to obtain compounds of synthetic interest.
Resumo:
Electrochemical sensors have attracted considerable attention in recent years because they provide data about the chemical state of our surroundings and the dynamics of the chemical transformations in the form a spatially resolved image. Particular interest has been directed to measurements in restricted-volume samples as new technologies enable the fabrication of miniaturized versions of sensors with reproducible characteristics. Taking these aspects into consideration, this review focuses on the use of electrodes of micrometer dimensions to acquire chemical information in microdomains in which concentrations may not be spatially homogeneous. This is possible because microelectrodes allow fast-response measurements with micrometer resolution to be performed. On the other hand, the use of microelectrodes as amperometric sensors presents an inherent drawback owing to the insufficient specificity toward the substrate of interest. Hence, some comments on strategies to enhance the selectivity of amperometric sensors are also made. Finally, recent applications of structurally microscopic electrodes as in vivo sensors are shown, as well as a prospect of the future trend in this field.
Resumo:
Many industrial processes produce effluents with a wide variety of xenobiotic organic pollutants, which cannot be efficiently degraded by conventional biological treatments. Thus, the development of new technologies to eliminate these refractory compounds in water has become very imperative in order to assure the quality of this important resource. Ozonation is a very promising process for the treatment of wastewaters containing non-easily removable organic compounds. The present work aims at highlighting new methods of enhancing the efficiency of ozone towards the removal organic pollutants in aqueous solution. Special attention is given to catalytic ozonation processes contemplating homo- and heterogeneous catalysis, their activity and mechanisms. Recent results and future prospects about the application of these processes to real effluents are also evaluated.
Resumo:
The main topics related to the use of dual-site catalysts in the production of polymers with broad molecular weight distribution are reviewed. The polymerization using dual-site catalysts is more economical and allows to produce a higher quality product than other processes, such as polymer blend and multistage reactors. However, the formulation of these catalysts is quite complicated since the same catalyst must produce distinct polymer grades. In addition, the release of patents concerning the combination of metallocenes and new technologies for polymerization shows that polymerization processes using dual-site catalysts are of current industrial interest.
Resumo:
Food production and preservation of the environment are among the challenges faced by contemporary society. In Brazil, as in most parts of the world, the possibility of increasing the agricultural area is limited by several factors. Thus, an increase in productivity through the application of innovative technologies is regarded as the best solution to overcome such a problem. For long, chemistry has contributed to agricultural innovations such as synthetic pesticides for pest management. However, due to the well-known adverse effects of these compounds, new "greener" strategies are being explored. Research in chemical ecology, in combination with other emerging sciences, is leading to the development of new technologies such as plant-based pesticides (biopesticides); synthetic pheromones and plant volatile organic compounds, both of them to manipulate insect behavior; chemical elicitors to boost plant resistance; and genetic engineering of plant varieties. In these, chemistry plays an important role in the identification and synthesis of functional compounds. These techniques may be incorporated in integrated pest management programs and may contribute to a sustainable agriculture in the future.
Resumo:
Coal, oil, natural gas, and shale gas are biomass that is formed millions of years ago. These are non-renewable and depleting, even considering the recent discovery of new sources of oil in the presalt and new technologies for the exploitation of shale deposits. Currently, these raw materials are used as a source of energy production and are also important for the production of fine chemicals. Since these materials are finite and their (oil) price is increasing, it is clear that there will be a progressive increase in the chemical industry to use renewable raw materials as a source of energy, an inevitable necessity for humanity. The major challenge for the society in the twenty first century is to unite governments, universities, research centers, and corporations to jointly act in all areas of science with one goal of finding a solution to global problems, such as conversion of biomass into compounds for the fine chemical industry.Non-renewable raw materials are used in the preparation of fuels, chemical intermediates, and derivatives for the fine chemical industry. However, their stock in nature has a finite duration, and their price is high and will likely increase with their depletion. In this scenario, the alternative is to use renewable biomass as a replacement for petrochemicals in the production of fine chemicals. As the production of biomass-based carbohydrates is the most abundant in nature, it is judicious to develop technologies for the generation of chain products (fuels, chemical intermediates, and derivatives for the fine chemicals industry) using this raw material. This paper presents some aspects and opportunities in the area of carbohydrate chemistry toward the generation of compounds for the fine chemical industry.
Resumo:
Catalytic steam reforming of ethanol (SRE) is a promising route for the production of renewable hydrogen (H2). This article reviews the influence of doping supported-catalysts used in SRE on the conversion of ethanol, selectivity for H2, and stability during long reaction periods. In addition, promising new technologies such as membrane reactors and electrochemical reforming for performing SRE are presented.
Resumo:
The constant evolution of science and the growing demand for new technologies have led to new techniques in instrumentation that can improve detection, separation, resolution, and peak capacity. Comprehensive two-dimensional liquid chromatography (LC×LC) is presented as a powerful tool in complex sample analyses. During an analysis, a sample is subjected to two independent separation mechanisms that are combined, resulting in increased resolving power. For appropriate application of LC×LC, understanding the influence of parameters that require optimization is necessary. The main purpose of optimization is to predict the combination of stationary phases, separation conditions, and instrumental requirements to obtain the best separation performance. This review discusses theoretical, intrumental, and chemometric aspects of LC×LC and focuses on its applications in foods. It aims to provide a clear understanding of the aspects that can be used as strategies in the optimization of this analytical method.
Resumo:
The use of spreadsheet softwares is not widespread in Chemical Education in Brazil as a computational education tool. By its turn the Qualitative Analytical Chemistry is considered a discipline with classical and non-flexible content. Thus in this work the spreadsheet software Excel® was evaluated as a teaching tool in a Qualitative Analytical Chemistry course for calculations of concentrations of the species in equilibrium in solutions of acids. After presenting the theory involved in such calculations the students were invited to elaborate the representation of the distribution of these species in a graphical form, using the spreadsheet software. Then the teaching team evaluated the resulting graphics regarding form and contents. The graphics with conceptual and/or formal errors were returned for correction, revealing significant improvement in the second presentation in all cases. The software showed to be motivating for the content of the discipline, improving the learning interest, while it was possible to prove that even in classical disciplines it is possible to introduce new technologies to help the teaching process.