56 resultados para Murine Model
em Scielo Saúde Pública - SP
Resumo:
The effects of infection with Trypanosoma cruzi on the electrocardiographic tracings of mice were studied in 4.groups of animals: (1) normal; (2) infected with a pathogenic T. cruzi strain (TS COB); (3) immunized with 3 intraperitoneal inocula of 10(6) attenuated T. cruzi epimastigotes (TCC) and (4) immunized-infected, which sequentially received the treatments of groups 3 and 2. Infection and protection were confirmed by xenodiagnosis and histopathology. Isolated alterations such as extrasystolia, 1st degree atrioventricular block, arrhythmia and ST elevation were observed in normal as well as infected mice. However, tracings taken repeatedly on each mouse over a 293 day period revealed a set of alterations which were more frequently seen in infected (14/22) than in normal (4/27) animals (p = 0.00048). These alterations consisted of supraventricular tachycardia, sinus bradycardia and persisting, first degree AV blocks, often associated to pacemaker changes. Inoculation of attenuated T. cruzi (group 3) did not increase these alterations (2/27 mice) but significantly prevented their development after challenge with the pathogenic strain (1/19 versus 14/22 mice, p = 0.000095). Thus, preimmunization reduced not only parasitemia but also a pathogenic consequence of T. cruzi infection. This evidence is relevant for immunoprevention studies against Chagas' disease.
Resumo:
A new orally absorbable triazole (Schering 39304) with a long serum half-life in man (60 hours), was tried in a murine model of progressive paracoccidioidomycosis and compared with itraconazole, another triazole which has proven effective in this mycosis. Only 15% of the infected, untreated mice survived while 53 to 75% of the animals receiving itraconazole survived. Mice treated with Schering 39304 exhibited higher (86 - 100%) survival rates. Statistically, the 5 mg/kg Sch 39304 was superior to the 50 mg/kg itraconazole dose. Lung cultures showed that 20 mg/kg/day of Sch achieved sterilization of the infectious foci. These results indicate that the new triazole will have a place in the treatment of paracoccidioidomycosis
Resumo:
An experimental model of murine chromoblastomycosis and in vitro tests with Fonsecaea pedrosoi were used to test the sensitivity of this fungus to three different antimycotics. The experimental model was standardized in BALB/c mice inoculated intraperitoneally with a 10(6) CFU/ml suspension of a F. pedrosoi isolate. Clinical infection was evident after 5 days of inoculation. Three groups of 27 mice each were used in the experiment. One group was treated with ketoconazole (KTZ), another with itraconazole (ITZ) and the other with saperconazole (SPZ). Antimycotic therapy was continued for 21 days. The control group consisted of 40 mice which were inoculated, but not treated. Infection was documented by macroscopic and microscopic examination of affected tissue in addition to culture of tissue macerates. Minimal inhibitory concentrations (MIC) and minimal fungicidal concentrations (MFC) for the F. pedrosoi strain used were done. The in vitro results showed that SPZ was the most active with MIC 0.01 mg/ml and MFC 0.1 mg/ml, followed by ITZ. SPZ was also the most effective in vivo since 63% of the treated animals (p=0.01) showed a curative effect after the observation period. We concluded that SPZ had the best in vitro and in vivo activity against F. pedrosoi.
Resumo:
Administration of an antifibrotic agent as an adjunct to antihelmintic treatment with the objective of morbidity reduction was investigated in the murine schistosomiasis mansoni model. Antifibrotic, ß-aminopropionitrile treatment has a profound effect on the cellular matrix composition of the liver granuloma of Schistosoma mansoni infected mice when given alone, resulting in increase macrophage infiltration. These macrophages, in response to stimulation with soluble egg antigen or lipopolysaccharide produced elevated levels of nitric oxide but low levels of tumor necrosis factor alpha compared to untreated infected mice. This also correlated with reduced liver granuloma size. In spite of low numbers of eggs in the liver, mice receiving a combine treatment had a high level of resistance to a challenge infection compared with mice receiving only praziquantel. Those mice also exhibited a reduced lymphocyte proliferative response, similar to that of infected untreated mice. Antifibrotic treatment has an impact on the dynamic of the cellular nature of granulomas and impacts on the host immunity to infection
Resumo:
We summarize here the main characteristics of a novel model of pulmonary hypersensitivity. Mice were immunized with a subcutaneous implant of a fragment of heat solidified chicken egg white and 14 days later challenged with ovalbumin given either by aerosol or by intratracheal instillation. This procedure induces a persistent eosinophilic lung inflammation, a marked bone marrow eosinophilia, and Th2-type isotypic profile with histopathological findings that resemble human asthma. Further, this model is simple to perform, reproducible in different strains of mice, does not require adjuvants nor multiple boosters. Based on these characteristics we propose it as a suitable murine model of allergic eosinophilic lung inflammation.
Resumo:
Distinct Toxoplasma gondii antigens were entrapped within liposomes and evaluated for their ability to protect Balb/c mice against congenital transmission: soluble tachyzoite antigen (L/STAg), soluble tissue cyst antigen (L/SCAg), soluble tachyzoite plus tissue cyst (L/STCAg) or purified 32kDa antigen of tachyzoite (L/pTAg). Soluble tachyzoite antigen alone in PBS (STAg) or emulsified in Freund's Complete Adjuvant (FCA/STAg) was also evaluated. Dams were inoculated subcutaneously with these antigens 6, 4 and 2 weeks prior to a challenge with four tissue cysts of the P strain of T. gondii orally between 10 and 14 days of pregnancy. Significant diminution differences were observed between the frequency of infected pups born of the dams immunized with the antigens incorporated into liposomes and that of pups born of the dams immunized with antigen emulsified in FCA or non immunized group (p<0.05). There was a significant decrease in the number of pups born dead in the groups L/STAg, L/SCAg and L/pTAg when compared with pups from all other groups (p <0.05). All dams immunized with or without adjuvant showed an antibody response and a proliferation of T-cells. However, no correlation was found between immune response and protection against the challenge.
Resumo:
Neuroschistosomiasis is rarely observed in human pathology, but it is of considerable importance. To investigate its pathogenesis, consequences and response to treatment, an experimental model would be desirable, but is not yet available, in spite of a few indications of a suitable mouse model in the literature. Severe, recent and late Schistosoma mansoni infections in outbred and inbred strains of mice revealed widespread distribution of parasite eggs in several organs, but only exceptionally did eggs reach the encephalus, thus revealing the inadequacy of the mouse as an experimental model for neuroschistosomiasis.
Resumo:
The goal of this study was to investigate the pattern of inflammatory response induced by Lagochilascaris minor in murine experimental model. For this purpose 115 mice were given 1000-3000 L. minor infective eggs "per os" and 51 uninfected mice were considered as controls. Four hours post-inoculation (PI), 3rd stage larvae were seen passing through the mucosa of terminal ends of small intestine. Six hours PI larvae were observed as an embolus inside the portal vein and also migrating through the liver parenchyma. During the first 24 h larvae-containing eggs of L. minor were observed in the lumen of intestinal tract. Two days PI larvae were seen migrating through lung parenchyma associated with an initial neutrophilic perivasculitis. From the 13th day of this experimental study, L. minor larvae were found mainly in skeletal muscles, in the center of granulomas. Concentric fibrosis with mixed inflammatory infiltrate involved the larvae after the 47th day PI, persistently. This experimental murine study with L. minor indicated that the 3rd stage larvae penetrated via ileum-cecal mucosa reaching the liver and probably other tissues through the hematogenic via. Throughout its pathway the larvae induced a granulomatous reaction, with abundant polimorphonuclear cells.
Resumo:
This work aimed to study the T helper type 1/2 (Th1/Th2) cytokine profile in a co-infection murine model of Plasmodium chabaudi chabaudi and Leishmania infantum. Expression of interferon-gamma (IFN-g) and interleukin-4 (IL-4) was analyzed, in spleen and liver of C57BL/6 mice, by reverse transcriptase-polymerase chain reaction. High levels of IFN-g expression did not prevent the progression of Leishmania in co-infected mice and Leishmania infection did not interfere with the Th1/Th2 switch necessary for Plasmodium control. The presence of IL-4 at day 28 in co-infected mice, essential for Plasmodium elimination, was probably a key factor on the exacerbation of the Leishmania infection.
Resumo:
Experimental models of Schistosoma mansoni infections in mammals have contributed greatly in understanding the pathology and pathogenesis of human infection. The absence of earlier reviews regarding specific strains of the Amazon region prompted research, which the main objective was to describe histopathological lesions in different phases of schistosomiasis in a murine model using PC (Pará) and LILA (Maranhão) S. mansoni strains. One hundred and eighty young female albino swiss mice (Mus musculus) were used and were randomly divided into five groups (PC-01, PC-02, LILA-01, LILA-02, and controls), according to the number of cercariae injected and the strain adopted. Animals were sacrificed in predetermined periods (35, 56, 112, 156, and 180 days) in an attempt to follow the evolution of the disease in the histological sections of their tissues at different phases of infection. Our findings were compatible with the data already described by others authors using different strains of S. mansoni, making it possible to identify some peculiarities, which are discussed in this work. In conclusion, the strains of parasite used did not modify the histopathological findings in the tissues of infected mice in any significant way when compared with the results of other studies using different strains.
Resumo:
Trypanosoma cruzi infection has a large public health impact in Latin American countries. Although the transmission rates via blood transfusions and insect vectors have declined sharply in the past 20 years due to policies of the Southern Cone countries, a large number of people are still at risk for infection. Currently, no accepted experimental model or descriptions of the clinical signs that occur during the course of acute murine infection are available. The aim of this work was to use non-invasive methods to evaluate the clinical signs of Balb/c mice infected with the Y strain of T. cruzi. The infected mice displayed evident clinical changes beginning in the third week of infection. The mice were evaluated based on physical characteristics, spontaneous activity, exploratory behaviour and physiological alterations. We hope that the results presented in this report provide parameters that complement the effective monitoring of trypanocidal treatment and other interventions used to treat experimental Chagas disease.
Resumo:
Chagas disease, caused by Trypanosoma cruzi, represents an endemic among Latin America countries. The participation of free radicals, especially nitric oxide (NO), has been demonstrated in the pathophysiology of seropositive individuals with T. cruzi. In Chagas disease, increased NO contributes to the development of cardiomyopathy and megacolon. Metallothioneins (MTs) are efficient free radicals scavengers of NO in vitro and in vivo. Here, we developed a murine model of the chronic phase of Chagas disease using endemic T. cruzi RyCH1 in BALB/c mice, which were divided into four groups: infected non-treated (Inf), infected N-monomethyl-L-arginine treated (Inf L-NAME), non-infected L-NAME treated and non-infected vehicle-treated. We determined blood parasitaemia and NO levels, the extent of parasite nests in tissues and liver MT-I expression levels. It was observed that NO levels were increasing in Inf mice in a time-dependent manner. Inf L-NAME mice had fewer T. cruzi nests in cardiac and skeletal muscle with decreased blood NO levels at day 135 post infection. This affect was negatively correlated with an increase of MT-I expression (r = -0.8462, p < 0.0001). In conclusion, we determined that in Chagas disease, an unknown inhibitory mechanism reduces MT-I expression, allowing augmented NO levels.
Resumo:
The aim of the present study was to compare the efficacy of a novel phosphodiesterase 4 and 5 inhibitor, LASSBio596, with that of dexamethasone in a murine model of chronic asthma. Lung mechanics (airway resistance, viscoelastic pressure, and static elastance), histology, and airway and lung parenchyma remodeling (quantitative analysis of collagen and elastic fiber) were analyzed. Thirty-three BALB/c mice were randomly assigned to four groups. In the asthma group (N = 9), mice were immunized with 10 µg ovalbumin (OVA, ip) on 7 alternate days, and after day 40 they were challenged with three intratracheal instillations of 20 µg OVA at 3-day intervals. Control mice (N = 8) received saline under the same protocol. In the dexamethasone (N = 8) and LASSBio596 (N = 8) groups, the animals of the asthma group were treated with 1 mg/kg dexamethasone disodium phosphate (0.1 mL, ip) or 10 mg/kg LASSBio596 dissolved in dimethyl sulfoxide (0.2 mL, ip) 24 h before the first intratracheal instillation of OVA, for 8 days. Airway resistance, viscoelastic pressure and static elastance increased significantly in the asthma group (77, 56, and 76%, respectively) compared to the control group. The asthma group presented more intense alveolar collapse, bronchoconstriction, and eosinophil and neutrophil infiltration than the control group. Both LASSBio596 and dexamethasone inhibited the changes in lung mechanics, tissue cellularity, bronchoconstriction, as well as airway and lung parenchyma remodeling. In conclusion, LASSBio596 at a dose of 10 mg/kg effectively prevented lung mechanical and morphometrical changes and had the potential to block fibroproliferation in a BALB/c mouse model of asthma.
Resumo:
After myocardial infarction (MI), activation of the immune system and inflammatory mechanisms, among others, can lead to ventricular remodeling and heart failure (HF). The interaction between these systemic alterations and corresponding changes in the heart has not been extensively examined in the setting of chronic ischemia. The main purpose of this study was to investigate alterations in cardiac gene and systemic cytokine profile in mice with post-ischemic HF. Plasma was tested for IgM and IgG anti-heart reactive repertoire and inflammatory cytokines. Heart samples were assayed for gene expression by analyzing hybridization to AECOM 32k mouse microarrays. Ischemic HF significantly increased the levels of total serum IgM (by 5.2-fold) and total IgG (by 3.6-fold) associated with a relatively high content of anti-heart specificity. A comparable increase was observed in the levels of circulating pro-inflammatory cytokines such as IL-1β (3.8X) and TNF-α (6.0X). IFN-γ was also increased by 3.1-fold in the MI group. However, IL-4 and IL-10 were not significantly different between the MI and sham-operated groups. Chemokines such as MCP-1 and IL-8 were 1.4- and 13-fold increased, respectively, in the plasma of infarcted mice. We identified 2079 well annotated unigenes that were significantly regulated by post-ischemic HF. Complement activation and immune response were among the most up-regulated processes. Interestingly, 21 of the 101 quantified unigenes involved in the inflammatory response were significantly up-regulated and none were down-regulated. These data indicate that post-ischemic heart remodeling is accompanied by immune-mediated mechanisms that act both systemically and locally.