61 resultados para Least-squares support vector machine
em Scielo Saúde Pública - SP
Resumo:
Least-squares support vector machines (LS-SVM) were used as an alternative multivariate calibration method for the simultaneous quantification of some common adulterants found in powdered milk samples, using near-infrared spectroscopy. Excellent models were built using LS-SVM for determining R², RMSECV and RMSEP values. LS-SVMs show superior performance for quantifying starch, whey and sucrose in powdered milk samples in relation to PLSR. This study shows that it is possible to determine precisely the amount of one and two common adulterants simultaneously in powdered milk samples using LS-SVM and NIR spectra.
Resumo:
Multivariate models were developed using Artificial Neural Network (ANN) and Least Square - Support Vector Machines (LS-SVM) for estimating lignin siringyl/guaiacyl ratio and the contents of cellulose, hemicelluloses and lignin in eucalyptus wood by pyrolysis associated to gaseous chromatography and mass spectrometry (Py-GC/MS). The results obtained by two calibration methods were in agreement with those of reference methods. However a comparison indicated that the LS-SVM model presented better predictive capacity for the cellulose and lignin contents, while the ANN model presented was more adequate for estimating the hemicelluloses content and lignin siringyl/guaiacyl ratio.
Resumo:
In this paper studies based on Multilayer Perception Artificial Neural Network and Least Square Support Vector Machine (LS-SVM) techniques are applied to determine of the concentration of Soil Organic Matter (SOM). Performances of the techniques are compared. SOM concentrations and spectral data from Mid-Infrared are used as input parameters for both techniques. Multivariate regressions were performed for a set of 1117 spectra of soil samples, with concentrations ranging from 2 to 400 g kg-1. The LS-SVM resulted in a Root Mean Square Error of Prediction of 3.26 g kg-1 that is comparable to the deviation of the Walkley-Black method (2.80 g kg-1).
Resumo:
Visible and near infrared (vis-NIR) spectroscopy is widely used to detect soil properties. The objective of this study is to evaluate the combined effect of moisture content (MC) and the modeling algorithm on prediction of soil organic carbon (SOC) and pH. Partial least squares (PLS) and the Artificial neural network (ANN) for modeling of SOC and pH at different MC levels were compared in terms of efficiency in prediction of regression. A total of 270 soil samples were used. Before spectral measurement, dry soil samples were weighed to determine the amount of water to be added by weight to achieve the specified gravimetric MC levels of 5, 10, 15, 20, and 25 %. A fiber-optic vis-NIR spectrophotometer (350-2500 nm) was used to measure spectra of soil samples in the diffuse reflectance mode. Spectra preprocessing and PLS regression were carried using Unscrambler® software. Statistica® software was used for ANN modeling. The best prediction result for SOC was obtained using the ANN (RMSEP = 0.82 % and RPD = 4.23) for soil samples with 25 % MC. The best prediction results for pH were obtained with PLS for dry soil samples (RMSEP = 0.65 % and RPD = 1.68) and soil samples with 10 % MC (RMSEP = 0.61 % and RPD = 1.71). Whereas the ANN showed better performance for SOC prediction at all MC levels, PLS showed better predictive accuracy of pH at all MC levels except for 25 % MC. Therefore, based on the data set used in the current study, the ANN is recommended for the analyses of SOC at all MC levels, whereas PLS is recommended for the analysis of pH at MC levels below 20 %.
Resumo:
Acetylation was performed to reduce the polarity of wood and increase its compatibility with polymer matrices for the production of composites. These reactions were performed first as a function of acetic acid and anhydride concentration in a mixture catalyzed by sulfuric acid. A concentration of 50%/50% (v/v) of acetic acid and anhydride was found to produced the highest conversion rate between the functional groups. After these reactions, the kinetics were investigated by varying times and temperatures using a 3² factorial design, and showed time was the most relevant parameter in determining the conversion of hydroxyl into carbonyl groups.
Resumo:
Analytical curves are normally obtained from discrete data by least squares regression. The least squares regression of data involving significant error in both x and y values should not be implemented by ordinary least squares (OLS). In this work, the use of orthogonal distance regression (ODR) is discussed as an alternative approach in order to take into account the error in the x variable. Four examples are presented to illustrate deviation between the results from both regression methods. The examples studied show that, in some situations, ODR coefficients must substitute for those of OLS, and, in other situations, the difference is not significant.
Resumo:
High resolution proton nuclear magnetic resonance spectroscopy (¹H MRS) can be used to detect biochemical changes in vitro caused by distinct pathologies. It can reveal distinct metabolic profiles of brain tumors although the accurate analysis and classification of different spectra remains a challenge. In this study, the pattern recognition method partial least squares discriminant analysis (PLS-DA) was used to classify 11.7 T ¹H MRS spectra of brain tissue extracts from patients with brain tumors into four classes (high-grade neuroglial, low-grade neuroglial, non-neuroglial, and metastasis) and a group of control brain tissue. PLS-DA revealed 9 metabolites as the most important in group differentiation: γ-aminobutyric acid, acetoacetate, alanine, creatine, glutamate/glutamine, glycine, myo-inositol, N-acetylaspartate, and choline compounds. Leave-one-out cross-validation showed that PLS-DA was efficient in group characterization. The metabolic patterns detected can be explained on the basis of previous multimodal studies of tumor metabolism and are consistent with neoplastic cell abnormalities possibly related to high turnover, resistance to apoptosis, osmotic stress and tumor tendency to use alternative energetic pathways such as glycolysis and ketogenesis.
Resumo:
A ocupação e consolidação do território na Amazônia apresentam diferentes características relacionadas à dinâmica das conversões de uso e cobertura da terra, que podem ser analisadas utilizando imagens orbitais de sensoriamento remoto. O objetivo do presente trabalho foi avaliar os produtos de detecção de mudanças gerados por análise de vetor de mudança (AVM) e subtração de imagens, a partir de imagens-fração derivadas das imagens ópticas TM/Landsat, para o estudo das conversões de uso e cobertura da terra presentes em área de colonização agrícola na região sudeste de Roraima. Analisaram-se as imagens de mudança provenientes da aplicação do AVM (magnitude, alfa e beta) e da subtração das imagens-fração (solo, sombra e vegetação) quanto à sua capacidade de identificar e discriminar as conversões existentes, de acordo com levantamento de campo. Foram testados dois algoritmos de classificação de imagens do tipo supervisionado, Bhattacharyya e Support Vector Machine. Foram feitos agrupamentos para otimizar a identificação das conversões nas classificações testadas. Houve melhor desempenho do classificador por regiões Bhattacharyya na discriminação das conversões. A utilização das imagens-diferença das frações como informação de entrada para o classificador apresentou qualidade de classificação muito boa ou excelente, sendo superior às classificações utilizando os produtos AVM, isoladamente ou em conjunto com as imagens-diferença.
Resumo:
ABSTRACTThe Amazon várzeas are an important component of the Amazon biome, but anthropic and climatic impacts have been leading to forest loss and interruption of essential ecosystem functions and services. The objectives of this study were to evaluate the capability of the Landsat-based Detection of Trends in Disturbance and Recovery (LandTrendr) algorithm to characterize changes in várzeaforest cover in the Lower Amazon, and to analyze the potential of spectral and temporal attributes to classify forest loss as either natural or anthropogenic. We used a time series of 37 Landsat TM and ETM+ images acquired between 1984 and 2009. We used the LandTrendr algorithm to detect forest cover change and the attributes of "start year", "magnitude", and "duration" of the changes, as well as "NDVI at the end of series". Detection was restricted to areas identified as having forest cover at the start and/or end of the time series. We used the Support Vector Machine (SVM) algorithm to classify the extracted attributes, differentiating between anthropogenic and natural forest loss. Detection reliability was consistently high for change events along the Amazon River channel, but variable for changes within the floodplain. Spectral-temporal trajectories faithfully represented the nature of changes in floodplain forest cover, corroborating field observations. We estimated anthropogenic forest losses to be larger (1.071 ha) than natural losses (884 ha), with a global classification accuracy of 94%. We conclude that the LandTrendr algorithm is a reliable tool for studies of forest dynamics throughout the floodplain.
Resumo:
This paper aims to assess the effectiveness of ASTER imagery to support the mapping of Pittosporum undulatum, an invasive woody species, in Pico da Vara Natural Reserve (S. Miguel Island, Archipelago of the Azores, Portugal). This assessment was done by applying K-Nearest Neighbor (KNN), Support Vector Machine (SVM) and Maximum Likelihood (MLC) pixel-based supervised classifications to 4 different geographic and remote sensing datasets constituted by the Visible, Near-Infrared (VNIR) and Short Wave Infrared (SWIR) of the ASTER sensor and by digital cartography associated to orography (altitude and "distance to water streams") of which the spatial distribution of Pittosporum undulatum directly depends. Overall, most performed classifications showed a strong agreement and high accuracy. At targeted species level, the two higher classification accuracies were obtained when applying MLC and KNN to the VNIR bands coupled with auxiliary geographic information use. Results improved significantly by including ecology and occurrence information of species (altitude and distance to water streams) in the classification scheme. These results show that the use of ASTER sensor VNIR spectral bands, when coupled to relevant ancillary GIS data, can constitute an effective and low cost approach for the evaluation and continuous assessment of Pittosporum undulatum woodland propagation and distribution within Protected Areas of the Azores Islands.
Resumo:
Coffee production was closely linked to the economic development of Brazil and, even today, coffee is an important product of the national agriculture. The State of Minas Gerais currently accounts for 52% of the whole coffee area in Brazil. Remote sensing data can provide information for monitoring and mapping of coffee crops, faster and cheaper than conventional methods. In this context, the objective of this study was to assess the effectiveness of coffee crop mapping in Monte Santo de Minas municipality, Minas Gerais State, Brazil, from fraction images derived from MODIS data, in both dry and rainy seasons. The Spectral Linear Mixing Model was used to derive fraction images of soil, coffee, and water/shade. These fraction images served as input data for the supervised automatic classification using the SVM - Support Vector Machine approach. The best results concerning Overall Accuracy and Kappa Index were obtained in the classification of the dry season, with 67% and 0.41, respectively.
Resumo:
OBJECTIVE To evaluate the cross-cultural validity of the Demand-Control Questionnaire, comparing the original Swedish questionnaire with the Brazilian version. METHODS We compared data from 362 Swedish and 399 Brazilian health workers. Confirmatory and exploratory factor analyses were performed to test structural validity, using the robust weighted least squares mean and variance-adjusted (WLSMV) estimator. Construct validity, using hypotheses testing, was evaluated through the inspection of the mean score distribution of the scale dimensions according to sociodemographic and social support at work variables. RESULTS The confirmatory and exploratory factor analyses supported the instrument in three dimensions (for Swedish and Brazilians): psychological demands, skill discretion and decision authority. The best-fit model was achieved by including an error correlation between work fast and work intensely (psychological demands) and removing the item repetitive work (skill discretion). Hypotheses testing showed that workers with university degree had higher scores on skill discretion and decision authority and those with high levels of Social Support at Work had lower scores on psychological demands and higher scores on decision authority. CONCLUSIONS The results supported the equivalent dimensional structures across the two culturally different work contexts. Skill discretion and decision authority formed two distinct dimensions and the item repetitive work should be removed.
Resumo:
Este trabalho procura analisar as inter-relações entre a inovatividade, o envolvimento, a atitude dentro do modelo Theory of Planned Behavior (TPB) decomposto desenvolvido na psicologia social, e a experiência com a Internet com o processo de adoção da compra pela internet. Foi elaborado um modelo integrativo que possibilitasse explicar a relação entre esses fatores e a compra pela internet, e foi desenvolvida uma pesquisa de campo considerando uma amostra não probabilística de estudantes. Foi utilizado o método multivariado de modelagem de equações estruturais, aplicado por meio da técnica Partial Least Squares (PLS) para a verificação, explicação e comparação das relações entre os construtos. Os resultados mostram que a intenção da compra pela internet é diretamente influenciada pela atitude e pela inovatividade, e a atitude é influenciada pelo envolvimento. Não foi encontrada relação entre a experiência com a internet e a compra pela internet.
Resumo:
Alho do mato (Cipura paludosa, Iridaceae) is a medicinal plant found in the Amazon rain forest, North of Brazil. It has been used to treat algic, inflammatory and infectious processes. The aim of this study was to evaluate the anti-inflammatory and antinociceptive action of the crude Cipura paludosa ethanolic extract at concentrations ranging between 2.0 and 4.0% in Oil and Water cream formulations for topical use. The physical-chemical stability of the formulations was monitored over a six-month period with the use of accelerated stability tests. In order to evaluate the anti-inflammatory and antinociceptive activities, we used a paw edema test induced by carrageenan and a formalin test, respectively. The paw edema test showed that there was a statistical difference in the control group in relation to the treatments. The formalin test did not confirm antinociceptive action of the treatments with the extract in the early phase of the test. However, statistical difference was confirmed for the treatments in relation to the control in the late phase. The antinociceptive and anti-inflammatory activities of Cipura paludosa preparations, as demonstrated in the results, at least partially support the ethno-medical uses of this plant.
Resumo:
ABSTRACT The spatial distribution of forest biomass in the Amazon is heterogeneous with a temporal and spatial variation, especially in relation to the different vegetation types of this biome. Biomass estimated in this region varies significantly depending on the applied approach and the data set used for modeling it. In this context, this study aimed to evaluate three different geostatistical techniques to estimate the spatial distribution of aboveground biomass (AGB). The selected techniques were: 1) ordinary least-squares regression (OLS), 2) geographically weighted regression (GWR) and, 3) geographically weighted regression - kriging (GWR-K). These techniques were applied to the same field dataset, using the same environmental variables derived from cartographic information and high-resolution remote sensing data (RapidEye). This study was developed in the Amazon rainforest from Sucumbíos - Ecuador. The results of this study showed that the GWR-K, a hybrid technique, provided statistically satisfactory estimates with the lowest prediction error compared to the other two techniques. Furthermore, we observed that 75% of the AGB was explained by the combination of remote sensing data and environmental variables, where the forest types are the most important variable for estimating AGB. It should be noted that while the use of high-resolution images significantly improves the estimation of the spatial distribution of AGB, the processing of this information requires high computational demand.