38 resultados para LIQUID-CRYSTALLINE PHASE
em Scielo Saúde Pública - SP
Resumo:
The principal techniques for the synthesis of liquid crystalline block copolymers are reviewed. The syntheses are done by living/controlled free radical chain polymerization. The copolymers display an amorphous continuous phase and a discontinuous liquid crystalline phase (LC). The presence of oxypropylenic segments disturbs the range of mesophase transitions at lower temperatures. This behavior is not observed when styrenic segments are employed and suggests that the liquid crystalline behavior can be modified in block copolymers to show mesophases at higher and lower temperatures according to the flexibility of the chain segment that is present.
Resumo:
For the construction of the phase diagrams, the method of the aqueous titration was used. There were prepared 5 ternary diagrams, varying the surfactant and the oil phase. The liquid-crystalline phases were identified by polarized light microscopy. The formulations prepared with silicon glycol copolymer, polyether functional siloxane (PFS) and water (S1) and with diisopropyl adipate, PFS and water (S4) presented liquid-crystalline phases with lamellar arrangement. Moreover, after 15 days in hot oven (37 ºC), the formulations presented hexagonal arrangement, evidencing the influence of the temperature in the organization of the system.
Resumo:
Glass-ceramic materials can be produced by the addition of LiO2 to fly ashes disposible in Southern Brazil. These glass-ceramics are based on the Al2O3-SiO2-Li 2O system. The high viscosity of the obtained glasses, however, makes forming useful articles with these materials difficult. In this study we investigate the effect of adding low cost Na2CO3 on the melt viscosity and on the nature of the developed crystalline phases. It was intended that the ultimate crystalline phase (LiAlSi3O8) should not be altered. With additions up to 3 wt. % Na2CO3, the viscosity was apparently lowered and no new crystalline phase were detected.
Resumo:
The preparation of gamma-LiAlO2 by coprecipitation and sol-gel synthesis was investigated. Ceramic powders obtained by coprecipitation synthesis were prepared from aqueous solutions of aluminum and lithium nitrates using sodium hydroxide as precipitant agent. By sol-gel synthesis, the ceramic powders were prepared from hydrolysis of aluminum isopropoxide. The materials obtained by two routes of synthesis were dried at 80ºC and calcined at 550, 750, 950 and 1150ºC. The characterization was done by X-ray diffraction, infrared spectroscopy, emission and absorption atomic spectrometry, helium picnometry, specific surface area (BET method) and scanning electronic microscopy. Mixtures of crystalline phases were obtained by coprecipitation synthesis: 80ºC- LiAl2(OH)7.2H2O + Al(OH)3; 550 and 750ºC- alpha-LiAlO2 + eta-Al2O3; 950 and 1150ºC- gamma-LiAlO2 + LiAl5O8. Chemical analysis showed molar ration Al/Li @ 3. Crystalline single-phases were obtained by sol-gel synthesis above 550ºC: 550ºC-alpha-LiAlO2; 750, 950 and 1150ºC-gamma-LiAlO2. These powders presented molar ration Al/Li @ 1. Thus, gamma-LiAlO2 crystalline phase was obtained at 750ºC by sol-gel synthesis while by coprecipitation synthesis, a mixture of crystalline phases was obtained. These results showed the superiority of the sol-gel synthesis for the preparation of pure gamma-LiAlO2.
Resumo:
This study compared properties of silica (SiO2) from rice husk (RH) and rice husk ash (RHA) extracted by acid- and heat-treatment. The SiO2 from RH was in amorphous phase with nearly 100% purity while that from RHA was in crystalline phase with 97.56% purity. Both extracted SiO2 were used in the synthesis of zeolite NaY but that from RH was better due to the efficiency in product recovery and simplicity of extraction. After the NaY was exchanged to NH4Y and calcined to convert to HY, the product did not carry over the textural properties of the parent NaY and NH4Y.
Resumo:
We describe a synthetic route consisting of five steps from aniline to obtain liquid crystal compounds derived from nitroazobenzene. Syntheses were performed during the second half of the semester in organic chemistry laboratory classes. Students characterized the liquid crystal phase by the standard melting point techniques, differential scanning calorimetry and polarized optical microscopy. These experiments allow undergraduate students to explore fundamentally important reactions in Organic Chemistry, as well as modern concepts in Chemistry such as self-assembly and self-organization, nanostructured materials and molecular electronics.
Resumo:
SiO2/TiO2 nanostructured composites with three different ratios of Si:Ti were prepared using the sol-gel method. These materials were characterized using energy dispersive X-ray fluorescence, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, photoluminescence, Raman with Fourier transform infrared spectroscopy, and the specific surface area. The band gaps of materials were determined by diffuse reflectance spectra, and the values of 3.20 ± 0.01, 2.92 ± 0.02, and 2.85 ± 0.01 eV were obtained as a result of the proportional increases in the amount of Ti within the composite. The materials exhibit only the anatase (TiO2) crystalline phase and have crystalline domains ranging from 4 to 5 nm. The photodegradation process of methylene blue, royal blue GRL, and golden yellow GL dyes were studied with respect to their contact times, pH variations within the solution, and the variations in the dye concentration of the solution in response to only sunlight. The maximum amount of time for the mineralization of dyes was 90 min. The kinetics of the process follows an apparently first order model, in which the obtained rate constant values were 5.72 × 10-2 min-1 for methylene blue, 6.44 × 10-2min-1 for royal blue GRL, and 1.07 × 10-1min-1 for golden yellow.
Resumo:
In this work, we used an aqueous two-phase system (ATPS) consisting of the ionic liquid [C4mim][Cl] and the salt K2HPO4 to partition α-lactalbumin, β-lactoglobulin, and lactoferrin whey proteins. Extraction efficiency values above 87% indicate that the proteins primarily migrated to the ionic liquid-rich phase (top phase). Partition coefficient values ranged from 6.17 to 8.93 for a-lactalbumin, from 22.80 to 34.55 for β-lactoglobulin, and from 26.46 to 40.06 for lactoferrin. Therefore, the saline ATPS with the ionic liquid examined in this study can be considered to be a promising alternative for extracting whey proteins.
Resumo:
Solid samples containing a Ca2Fe2O5 phase were synthesized using the Pechini method. The samples were characterized using X-ray diffraction, thermogravimetric analysis, differential thermal analysis, X-ray fluorescence, nitrogen adsorption/desorption isotherms, and scanning electron microscopy. The stability of the Ca2Fe2O5 phase was evaluated in the photocatalytic degradation of methylene blue (MB) in aqueous solution in the presence of bubbling gas (air, N2, or CO2). The presence of CO2 is known to suppress MB degradation. After the photocatalytic test, changes were observed in the crystalline phase of all systems. These results suggest the low stability of the Ca2Fe2O5 phase in aqueous systems and the significant effect of CO2 on the photocatalytic activity of the Ca2Fe2O5 phase.
Resumo:
A fast gas chromatography with a flame ionisation detector (GC-FID) method for the simultaneous analysis of methyl palmitate (C16:0), stearate (C18:0), oleate (C18:1), linoleate (C18:2) and linolenate (C18:3) in biodiesel samples was proposed. The analysis was conducted in a customised ionic-liquid stationary-phase capillary, SLB-IL 111, with a length of 14 m, an internal diameter of 0.10 mm, a film thickness of 0.08 µm and operated isothermally at 160 °C using hydrogen as the carrier gas at a rate of 50 cm s-1 in run time about 3 min. Once methyl myristate (C14:0) is present lower than 0.5% m/m in real samples it was used as an internal standard. The method was successful applied to monitoring basic and acidic catalysis transesterification reactions of vegetable oils such as soybean, canola, corn, sunflower and those used in frying process.
Resumo:
Determination of free urinary cortisol is a test of choice in the diagnosis of Cushing's syndrome. In this study, cortisol was quantified using reversed-phase high-performance liquid chromatography (RP-HPLC) in urine samples previously extracted with ether and using triamcinolone acetonide as internal standard (IS). A BDS-Hypersil-C18® column, water-acetonitrile (72:28; v/v), with a flow rate of 1.0 mL/min and detection at 243 nm were used. This method showed to be both effective and efficient, with sensitivity and linearity ranging from 2.50 to 150 μg/L, and can be used in substitution to the radioimmunoassay technique within this concentration range.
Resumo:
A dissolution test for in vitro evaluation of tablet dosage forms containing 10 mg of rupatadine was developed and validated by RP-LC. A discriminatory dissolution method was established using apparatus paddle at a stirring rate of 50 rpm with 900 mL of deaerated 0.01 M hydrochloric acid. The proposed method was validated yielding acceptable results for the parameters evaluated, and was applied for the quality control analysis of rupatadine tablets, and to evaluate the formulation during an accelerated stability study. Moreover, quantitative analyses were also performed, to compare the applicability of the RP-LC and the LC-MS/MS methods.
Resumo:
A neural network procedure to solve inverse chemical kinetic problems is discussed in this work. Rate constants are calculated from the product concentration of an irreversible consecutive reaction: the hydrogenation of Citral molecule, a process with industrial interest. Simulated and experimental data are considered. Errors in the simulated data, up to 7% in the concentrations, were assumed to investigate the robustness of the inverse procedure. Also, the proposed method is compared with two common methods in nonlinear analysis; the Simplex and Levenberg-Marquardt approaches. In all situations investigated, the neural network approach was numerically stable and robust with respect to deviations in the initial conditions or experimental noises.
Resumo:
A method using Liquid Phase Microextraction for simultaneous detection of citalopram (CIT), paroxetine (PAR) and fluoxetine (FLU), using venlafaxine as internal standard, in plasma by high performance liquid chromatography with fluorescence detection was developed. The linearity was evaluated between 5.0 and 500 ng mL-1 (r > 0.99) and the limit of quantification was 2.0, 3.0 and 5.0 ng mL-1 for CIT, PAR and FLU, respectively. Therefore, it can be applied to therapeutic drug monitoring, pharmacokinetics or bioavailability studies and its advantages are that it necessary relatively inexpensive equipment and sample preparation techniques.
Resumo:
A rapid and sensitive method using high performance liquid chromatography has been developed and validated for the simultaneous determination of non-steroidal anti-inflammatory drugs (NSAIDs) in pharmaceutical formulations and human serum. Six NSAIDs including: naproxen sodium, diclofenac sodium, meloxicam, flurbiprofen, tiaprofenic and mefenamic acid were analyzed simultaneously in presence of ibuprofen as internal standard on Mediterranea C18 (5 µm, 250 x 0.46 mm) column. Mobile phase comprised of methanol: acetonitrile: H2O (60:20:20, v/v; pH 3.35) and pumped at a flow rate of 1 mL min-1 using 265 nm UV detection. The method was linear over a concentration range of 0.25-50 µg mL-1 (r² = 0.9999).