25 resultados para HYDROXIDE NANOPARTICLES
em Scielo Saúde Pública - SP
Resumo:
Silver nanoparticles (AgNPs) are metal structures at the nanoscale. AgNPs have exhibited antimicrobial activities against fungi and bacteria; however synthesis of AgNPs can generate toxic waste during the reaction process. Accordingly, new routes using non-toxic compounds have been researched. The proposal of the present study was to synthesize AgNPs using ribose as a reducing agent and sodium dodecyl sulfate (SDS) as a stabilizer. The antifungal activity of these particles against C. albicans and C. tropicalis was also evaluated. Stable nanoparticles 12.5 ± 4.9 nm (mean ± SD) in size were obtained, which showed high activity against Candida spp. and could represent an alternative for fungal infection treatment.
Resumo:
Quantitative method of viral pollution determination for large volume of water using ferric hydroxide gel impregnated on the surface of glassfibre cartridge filter. The use of ferric hydroxide gel, impregnated on the surface of glassfibre cartridge filter enable us to recover 62.5% of virus (Poliomylitis type I, Lsc strain) exsogeneously added to 400 liters of tap-water. The virus concentrator system consists of four cartridge filters, in which the three first one are clarifiers, where the contaminants are removed physically, without significant virus loss at this stage. The last cartridge filter is impregnated with ferric hydroxide gel, where the virus is adsorbed. After the required volume of water has been processed, the last filter is removed from the system and the viruses are recovered from the gel, using 1 liter of glycine/NaOH buffer, at pH 11. Immediately the eluate is clarified through series of cellulose acetate membranes mounted in a 142mm Millipore filter. For the second step of virus concentration, HC1 1N is added slowly to the eluate to achieve pH 3.5-4. MgC1, is added to give a final concentration of 0.05M and the viruses are readsorbed on a 0.45 , porosity (HA) cellulose acetate membrane, mounted in a 90 mm Millipore filter. The viruses are recovered using the same eluent plus 10% of fetal calf serum, to a final volume of 3 ml. In this way, it was possible to concentrate virus from 400 liters of tap-water, into 1 liter in the first stage of virus concentration and just to 3 ml of final volume in a second step. The efficiency, simplicity and low operational cost, provded by the method, make it feasible to study viral pollution of recreational and tap-water sources.
Resumo:
Linear relationships were found between the dose of A1(OH)3 adjuvant and the titer of anti-OVA antibodies formed by BDF1 mice. Mice immunized with OVA, DNP-KLH and then boosted with DNP-OVA formed anti-DNP antibodies only when A1(OH)3 was added to the injection of DNP-KLH; addition of A1(OH)3 to the priming injection of OVA decreased, rather than increased antibody formation.
Resumo:
The need to develop a vaccine against schistosomiasis led several researches and our group to investigate proteins from Schistosoma mansoni as vaccine candidates. Sm22.6 is a protein from S. mansoni that shows high identity with Sj22.6 and Sh22.6 (79 and 91%, respectively). These proteins are associated with high levels of IgE and protection to reinfection. Previously, we have shown that Sm22.6 induced a partial protection of 34.5% when used together with Freund's adjuvant and produced a Th0 type of immune response with interferon-g and interleukin-4. In this work, mice were immunized with Sm22.6 alone or with aluminum hydroxide adjuvant and high levels of IgG, IgG1, and IgG2a were measured. Unfortunately, no protection was detected. Since IL-10 is a modulating cytokine in schistosomiasis, we also observed a high level of this molecule in splenocytes of vaccinated mice. In conclusion, we did not observe the adjuvant effect of aluminum hydroxide associated with rSm22.6 in protective immunity.
Resumo:
In this work we report the obtention of a tetrabutylammonium hydroxide (TBAOH) solution in acetonitrile in a one pot process in order to study the interaction ironporphyrinOH- in non-aqueous systems. All the reactions were carried out under dry argon atmosphere to prevent the contamination of the solution with CO2, which leads to the formation of (TBA)2CO3.
Resumo:
Crystals of Mg/Al layered double hydroxide were synthesized by alkaline precipitation and treated in an aqueous solution of glutamic acid. The glutamate ions were not intercalated into the interlayer space, but were detected in the material by Fourier transform infrared spectroscopy, suggesting that only the external surfaces of crystals were modified with glutamate ions. The resulting hybrid material was tested as a support for immobilization of the enzyme laccase (Myceliophthora thermophila). The immobilized enzyme preparation was characterized by electronic paramagnetic resonance spectroscopy and by assays of catalytic activity. The activity of the immobilized laccase was 97% of the activity in the free enzyme. Layered double hydroxide is a suitable support for use in remediation of soil studies.
pH effect on the synthesis of magnetite nanoparticles by the chemical reduction-precipitation method
Resumo:
This work aimed at putting in evidence the influence of the pH on the chemical nature and properties of the synthesized magnetic nanocomposites. Saturation magnetization measurements evidenced a marked difference of the magnetic behavior of samples, depending on the final pH of the solution after reaction. Magnetite and maghemite in different proportions were the main magnetic iron oxides actually identified. Synthesis with final pH between 9.7-10.6 produced nearly pure magnetite with little or no other associated iron oxide. Under other synthetic conditions, goethite also appears in proportions that depended upon the pH of the synthesis medium.
Resumo:
Hydrogels micro, sub-micro and nanoparticles are of great interest for drug encapsulation and delivery or as embolotherapic agents. In this work it is described the preparation of nano and sub-microparticles of pre-formed, high molecular weight and monomer free poly(N-vinyl-2-pyrrolidone) encapsulated inside the core of lecithin vesicles. The hydrogel particles are formed with a very narrow diameter distribution, of about 800 nm, and a moderate swelling ratio, of approximately 10.
Resumo:
A derivative spectrophotometric method was validated for quantification of acyclovir in poly (n-butylcyanoacrylate) (PBCA) nanoparticles. Specificity, linearity, precision, accuracy, recovery, detection (LOD) and quantification (LOQ) limits were established for method validation. First-derivative at 295.2 nm eliminated interferences from nanoparticle ingredients and presented linearity for acyclovir concentrations ranging from 1.25 to 40.0 µg/mL (r = 0.9999). Precision and accuracy data demonstrated good reproducibility. Recovery ranged from 99.3 to 101.2. LOD was 0.08 µg/mL and LOQ, 0.25 µg/mL. Thus, the proposed method proved to be easy, low cost, and accurate, and therefore, an useful alternative to quantify acyclovir in nanoparticles.
Resumo:
Indium tin oxide nanoparticles were synthesized in two different sizes by a nonhydrolytic sol-gel method. These powders were then transformed into ITO via an intermediate metastable state at between 300 and 600 ºC. The presence of characteristic O-In-O and O-Sn-O bands at 480 and 670 cm-1 confirmed the formation of ITO. The X-ray diffraction patterns indicated the preferential formation of metastable hexagonal phase ITO (corundum type) as opposed to cubic phase ITO when the reflux time was less than 3 h and the heat treatment temperature was below 600 ºC. Particle morphology and crystal size were examined by scanning electron microscopy.
Resumo:
In this study, bioactive hydroxyapatite nanoparticles were prepared by two different methods: wet chemical precipitation and biomimetic precipitation. The aim was to evaluate the morphology, particle-size, crystallinity and phases of the powders obtained by traditional wet chemical precipitation and the novel biomimetic precipitation using a supersaturated calcium solution. The nanoparticles were investigated by transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. The results revealed that the nanoparticles were formed by hydroxyapatite with a high crystallinity and controlled morphology. Additionally, it was found that the shape and size of the nanoparticles can be modified with each preparation method.
Resumo:
The effect of calcination conditions on the size and killing activity of CaO nanoparticles towards L. plantarum was studied in this paper. The results showed that CaO nanoparticles with a diameter of 20 nm could be obtained under the investigated conditions. The lethal effect of CaO nanoparticles after incubation of 6 or 24 h increased with increasing calcination time. Using CaO-SA, CaO-SB, and CaO-SC after a 24-h exposure, 2.25, 3.37, and 5.97 log L. plantarum were killed, respectively, at a concentration of 100 ppm. The current results show that the use of CaO nanoparticles as antibacterial agents has significant potential in food-relevant industries.
Resumo:
Biodegradable nanoparticles (NPs) have received considerable attention because of their possible use in the development of strategies for the topical delivery of oils and therapeutic drugs, particularly when drug penetration in dermis is desired. Zein is a prolamine and is a promising material for the design of drug delivery systems. In this study, NPs were prepared with zein and were used to encapsulate and release terpinen-4-ol, which is a therapeutic agent for the treatment of melanoma. The results show that the zein NPs are promising nanostructured systems for the prolonged delivery of T4OL with potential applications in anti-melanoma therapy.
Resumo:
Xanthyletin is used as an inhibitor of the symbiotic fungus (Leucoagaricus gongylophorus) of the leaf-cutting ant (Atta sexdens rubropilosa), one of the most significant agricultural plague insects. The incorporation of this compound into nanoparticles is a promising approach to effectively control leaf-cutting ants. This study presents the development and validation of a specific analytical method using high-performance liquid chromatography (HPLC) for quantification of the xanthyletin content in biodegradable polymeric nanoparticles. The analytical methodology developed was specific, linear, accurate, precise, and robust. The absolute recovery of xanthyletin in colloidal suspensions was nearly 100%. The HPLC method proved reliable for the quantification of xanthyletin content in nanoparticle formulations.
Resumo:
A simple preconcentration method of silicon based on coprecipitation with aluminum hydroxide prior to its flame atomic absorption (FAAS) determination was established. The recovery values of analyte ion was higher than 95%. The parameters including types of hydroxide ion source for precipitation, acid type for dissolution step, amount of aluminum ion as collector, pH, temperature, standing and centrifuge time, and sample volume were optimized for the quantitative recovery of the analyte. The influences of matrix ions were also examined. The relative standard deviation was found to be 3.2%. The limit of detection was calculated as (0.1 mg L-1). The preconcentration factor is 100 for (200 mL) solution. The proposed method was successfully applied for the determination of silicon in some water and alloy samples.