35 resultados para Grassland Degradation
em Scielo Saúde Pública - SP
Resumo:
ABSTRACT: Despite the reduction in deforestation rate in recent years, the impact of global warming by itself can cause changes in vegetation cover. The objective of this work was to investigate the possible changes on the major Brazilian biome, the Amazon Rainforest, under different climate change scenarios. The dynamic vegetation models may simulate changes in vegetation distribution and the biogeochemical processes due to climate change. Initially, the Inland dynamic vegetation model was forced with initial and boundary conditions provided by CFSR and the Eta regional climate model driven by the historical simulation of HadGEM2-ES. These simulations were validated using the Santarém tower data. In the second part, we assess the impact of a future climate change on the Amazon biome by applying the Inland model forced with regional climate change projections. The projections show that some areas of rainforest in the Amazon region are replaced by deciduous forest type and grassland in RCP4.5 scenario and only by grassland in RCP8.5 scenario at the end of this century. The model indicates a reduction of approximately 9% in the area of tropical forest in RCP4.5 scenario and a further reduction in the RCP8.5 scenario of about 50% in the eastern region of Amazon. Although the increase of CO2 atmospheric concentration may favour the growth of trees, the projections of Eta-HadGEM2-ES show increase of temperature and reduction of rainfall in the Amazon region, which caused the forest degradation in these simulations.
Resumo:
Soil invertebrate distribution in Araucaria forest, grassland and edge habitats was studied in both disturbed and undisturbed areas in southern Brazil. Mean-density and taxa compositions were verified. Invertebrate densities differed between grassland and the other two habitats in the undisturbed area but not across the disturbed one. At the disturbed area taxa differed between the grassland and the other two habitats. The undisturbed area, on the other hand, presented taxa differences only between the grassland and the forest habitats. Acari, Arachnida and Collembola were the most sensitive taxa for detecting differences across habitats in both areas. At the disturbed area, these taxa presented densities lowering from the forest to the grassland. At the undisturbed area the same taxa increased from the forest to the grassland. Coleoptera and Formicidae (Insecta) presented no difference between habitats at the studied taxonomic level.
Resumo:
Afforestation of temperate grasslands with fast-growing trees for industrial pulpwood production is spreading in South America. Despite high afforestation rates resulting from governmental policies that stimulate pulpwood production in grasslands of southern Brazil and Uruguay, the impact of this activity on biodiversity remains to be properly assessed. We used an Impact-Reference study design to evaluate how grassland afforestation affects the composition of grassland bird assemblages. We sampled eucalyptus plantations and neighboring natural grasslands in southern Brazil from 2006-2009, and relied on nested sampling and analysis to separate the effects of afforestation from the natural variability of grasslands. We recorded a significant difference in composition between assemblages from grasslands and tree plantations. Species adapted to open, treeless areas tended to be negatively affected in relation to edge or forest birds in eucalyptus plantations. Afforestation is systematically replacing the bird assemblage of hilltop grasslands by a collection of common edge and forest species that occur in nearby riverine and hillside forests. Although most grassland birds negatively affected by tree plantations are common and widespread, observed and predicted afforestation rates in southeastern South America may result in regional population reductions in the near future.
Resumo:
Nearly all remnants of temperate grasslands in southeastern South America are used for livestock ranching and are subject to habitat degradation resulting from this activity. Exploring how habitat features affect the composition of grassland avifaunal communities is a first step to understand how current cattle-ranching management practices impact avian diversity. We used canonical ordination to test for relationships between five habitat variables and the composition of the bird community in coastal grasslands in southern Brazil. We sampled pastures with different heights, from overgrazed short-grass to tall herbaceous vegetation. We recorded 1,535 individuals and 27 species of birds. The first ordination axis indicated a strong contribution of mean vegetation height on the composition of the bird community, whereas the second axis revealed the influence of herbaceous vegetation patchiness and woody vegetation cover. Three groups of species were revealed by the ordination: one more diffuse associated with intermediate and tall herbaceous vegetation, another with short grass, and a third with vegetation patchiness and woody vegetation. Species restricted to tall herbaceous vegetation are negatively impacted from habitat degradation resulting from overgrazing and trampling by livestock, and mowing and burning of tall plants. Occurrence of these species in our study area is related with the presence of swales immediately behind the dune system and where remnants of tall vegetation persist. Birds of pastures with ample cover of short herbaceous plants, including one globally threatened species and six other restricted to short-grass habitat, apparently benefit from local livestock management practices. Woody vegetation possibly functions as a keystone structure, enabling the occurrence in grasslands of avian species that rely on shrubby habitat. Although livestock ranching promotes the diversity of habitats by creating distinct patches of vegetation height in grasslands, current management practices directed to the maintenance of short grass pastures may eliminate an entire subset of species, including regionally threatened taxa, and reduce avian diversity. The maintenance of large patches of tall herbaceous plants is needed to ensure the survival of species reliant on this type of grassland structure in our study area.
Resumo:
The Araneidae is a speciose family including web-spinning spiders that are very abundant in various terrestrial ecosystems. Several studies demonstrate that changes in vegetation surrounding rivers, streams and brooks affect the associated araneofauna. The aim of this research was to compare differences found in diversity (abundance and richness), composition and phenology of Araneidae spiders sampled in different habitats in four riparian forest catchments in southern Brazil. Samples were taken from riparian forests in four rivers of Rio Grande do Sul State: Piratini, Camaquã, Sinos and Maquiné rivers, each in a different hydrographic basin. Samples were taken twice seasonally on each basin during two years, sampling the araneofauna of the tree-shrub strata with beating tray. Six transects were employed on each basin, two per habitat: edge with grassland, forest interior and river edge. Araneids totalled 20 genera and 65 species. Comparing riparian forests significant differences are found. Spider abundance differed among riparian forests as well as species richness. Overall, Piratini river riparian forest had the higher abundance and richness for Araneidae; the lower values were in Sinos river forest. The stronger degradation and fragmentation of the riparian forests of Sinos river probably influenced the results, with human disturbance gradients associated negatively to web building. We present data on the diversity of these spiders, which were very abundant in the riparian forest interior and very rich in species in the grassland/riparian forest edge. Species composition also differs among the studied habitats (the above plus river/riparian forest edge). For the most abundant species the phenological pattern across the seasons was also analysed.
Resumo:
Optical and electron microscopical evidences of focal matrix degradation were frequently seen in liver sections taken from patients with periportal ("pipe-stem") fibrosis caused by schistosomiasis mansoni. Besides present of focal areas of rarefaction, fragmentation and dispersion of collagen fibers, the enlargend portal spaces also showed hyperplasia of elastic tisue and disarray of smooth muscle fibers following the destrution of portal vein branches. Ultrastructural cahnges represented by focal lytic and/or electron dense alterations of colagen fibrils were similar to those first seen in experimental material and designated as "chronic collagen degradation". Elastin and related microfibrils were also affected by focal condensation, fragmentation, distorsion and dissolution. Schistosome eggs were scanty in the tissue sections examined. Matrix degradation represented involuting changes related to the progressive diminution of parasite aggression, which occurs spontaneously with age or after cure by chemotherapy. Changes of focal matrix degradation now being described represent the basic morphological counterpart of periportal fibrosis involution documented clinically, especially by ultrasonography, in patients with hepatosplenic schistosomiasis submitted to curative chemotherapy.
Resumo:
Enhanced degradation of the fungicide metalaxyl was investigated in two soils: a gley humic (GH) and a Dark Red Latosol (LE), collected at sites never exposed to the fungicide. The soil samples were treated with successive applications of metalaxyl as a commercial formulation and 14C-metalaxyl in laboratory. Metalaxyl biodegradation was analyzed during 63 days by means of radiometric techniques to verify biomineralization and degradation product formation from the applied 14C-metalaxyl. Although biomineralization (maximum of 14 and 8% in the GH and LE soils, respectively), and partial degradation (about 32 and 48%, respectively) were detected in both soils, enhanced degradation was verified only in the GH soil. Results proved that metalaxyl behaves differently in soils.
Molecular analysis of the bacterial diversity in a specialized consortium for diesel oil degradation
Resumo:
Diesel oil is a compound derived from petroleum, consisting primarily of hydrocarbons. Poor conditions in transportation and storage of this product can contribute significantly to accidental spills causing serious ecological problems in soil and water and affecting the diversity of the microbial environment. The cloning and sequencing of the 16S rRNA gene is one of the molecular techniques that allows estimation and comparison of the microbial diversity in different environmental samples. The aim of this work was to estimate the diversity of microorganisms from the Bacteria domain in a consortium specialized in diesel oil degradation through partial sequencing of the 16S rRNA gene. After the extraction of DNA metagenomics, the material was amplified by PCR reaction using specific oligonucleotide primers for the 16S rRNA gene. The PCR products were cloned into a pGEM-T-Easy vector (Promega), and Escherichia coli was used as the host cell for recombinant DNAs. The partial clone sequencing was obtained using universal oligonucleotide primers from the vector. The genetic library obtained generated 431 clones. All the sequenced clones presented similarity to phylum Proteobacteria, with Gammaproteobacteria the most present group (49.8 % of the clones), followed by Alphaproteobacteira (44.8 %) and Betaproteobacteria (5.4 %). The Pseudomonas genus was the most abundant in the metagenomic library, followed by the Parvibaculum and the Sphingobium genus, respectively. After partial sequencing of the 16S rRNA, the diversity of the bacterial consortium was estimated using DOTUR software. When comparing these sequences to the database from the National Center for Biotechnology Information (NCBI), a strong correlation was found between the data generated by the software used and the data deposited in NCBI.
Resumo:
Soil erosion is one of the chief causes of agricultural land degradation. Practices of conservation agriculture, such as no-tillage and cover crops, are the key strategies of soil erosion control. In a long-term experiment on a Typic Paleudalf, we evaluated the temporal changes of soil loss and water runoff rates promoted by the transition from conventional to no-tillage systems in the treatments: bare soil (BS); grassland (GL); winter fallow (WF); intercrop maize and velvet bean (M+VB); intercrop maize and jack bean (M+JB); forage radish as winter cover crop (FR); and winter cover crop consortium ryegrass - common vetch (RG+CV). Intensive soil tillage induced higher soil losses and water runoff rates; these effects persisted for up to three years after the adoption of no-tillage. The planting of cover crops resulted in a faster decrease of soil and water loss rates in the first years after conversion from conventional to no-tillage than to winter fallow. The association of no-tillage with cover crops promoted progressive soil stabilization; after three years, soil losses were similar and water runoff was lower than from grassland soil. In the treatments of cropping systems with cover crops, soil losses were reduced by 99.7 and 66.7 %, compared to bare soil and winter fallow, while the water losses were reduced by 96.8 and 71.8 % in relation to the same treatments, respectively.
Resumo:
Soils are the foundation of terrestrial ecosystems and their role in food production is fundamental, although physical degradation has been observed in recent years, caused by different cultural practices that modify structures and consequently the functioning of soils. The objective of this study was to evaluate possible structural changes and degradation in an Oxisol under different managements for 20 years: no-tillage cultivation with and without crop rotation, perennial crop and conventional tillage, plus a forested area (reference). Initially, the crop profile was described and subsequently, 10 samples per management system and forest soil were collected to quantify soil organic matter, flocculation degree, bulk density, and macroporosity. The results indicated structural changes down to a soil depth of 50 cm, with predominance of structural units ∆μ (intermediate compaction level) under perennial crop and no-tillage crop rotation, and of structural units ∆ (compacted) under conventional tillage and no-tillage. The soil was increasingly degraded in the increasing order: forest => no-tillage crop rotation => perennial crop => no-tillage without crop rotation => conventional tillage. In all managements, the values of organic matter and macroporosity were always below and bulk density always above those of the reference area (forest) and, under no-tillage crop rotation and perennial crop, the flocculation degree was proportionally equal to that of the reference area.
Resumo:
Peatlands are soil environments that accumulate water and organic carbon and function as records of paleo-environmental changes. The variability in the composition of organic matter is reflected in their morphological, physical, and chemical properties. The aim of this study was to characterize these properties in peatlands from the headwaters of the Rio Araçuaí (Araçuaí River) in different stages of preservation. Two cores from peatlands with different vegetation types (moist grassland and semideciduous seasonal forest) from the Rio Preto [Preto River] headwaters (conservation area) and the Córrego Cachoeira dos Borges [Cachoeira dos Borges stream] (disturbed area) were sampled. Both are tributaries of the Rio Araçuaí. Samples were taken from layers of 15 cm, and morphological, physical, and chemical analyses were performed. The 14C age and δ13C values were determined in three samples from each core and the vertical growth and organic carbon accumulation rates were estimated. Dendrograms were constructed for each peatland by hierarchical clustering of similar layers with data from 34 parameters. The headwater peatlands of the Rio Araçuaí have a predominance of organic material in an advanced stage of decomposition and their soils are classified as Typic Haplosaprists. The organic matter in the Histosols of the peatlands of the headwaters of the Rio Araçuaí shows marked differences with respect to its morphological, physical, and chemical composition, as it is influenced by the type of vegetation that colonizes it. The peat from the headwaters of the Córrego Cachoeira dos Borges is in a more advanced stage of degradation than the peat from the Rio Preto, which highlights the urgent need for protection of these ecosystems/soil environments.
Resumo:
This work investigated the effect of repeated applications on enhanced degradation of metalaxyl in two different agricultural soils used for cultivation of orange and lemon from Casa Branca and Itapetininga districts of São Paulo State, Brazil. Soil samples were collected from areas repeatedly treated with commercial ridomil 50GR for six successive years, and from other areas never exposed to this fungicide. At the laboratory, soil samples received a 14C-metalaxyl solution and its degradation was studied through radiometric techniques to measure biomineralization and recovery of extractable- and soil-bound products. Enhanced degradation was verified only in one soil, although partial degradation and mineralization of the fungicide were detected in both soils. The different rates and patterns of metalaxyl degradation in the soils were probably due to their different physical, chemical, and biological characteristics.
Resumo:
The objective of this work was to evaluate the catabolic gene diversity for the bacterial degradation of aromatic hydrocarbons in anthropogenic dark earth of Amazonia (ADE) and their biochar (BC). Functional diversity analyses in ADE soils can provide information on how adaptive microorganisms may influence the fertility of soils and what is their involvement in biogeochemical cycles. For this, clone libraries containing the gene encoding for the alpha subunit of aromatic ring-hydroxylating dioxygenases (α-ARHD bacterial gene) were constructed, totaling 800 clones. These libraries were prepared from samples of an ADE soil under two different land uses, located at the Caldeirão Experimental Station - secondary forest (SF) and agriculture (AG) -, and the biochar (SF_BC and AG_BC, respectively). Heterogeneity estimates indicated greater diversity in BC libraries; and Venn diagrams showed more unique operational protein clusters (OPC) in the SF_BC library than the ADE soil, which indicates that specific metabolic processes may occur in biochar. Phylogenetic analysis showed unidentified dioxygenases in ADE soils. Libraries containing functional gene encoding for the alpha subunit of the aromatic ring-hydroxylating dioxygenases (ARHD) gene from biochar show higher diversity indices than those of ADE under secondary forest and agriculture.
Resumo:
Glasses with low silica content are very susceptible to suffer pronounced degradation when exposed to room atmosphere during short times. In this work the results of the degradation of the surface of a metasilicate glass with composition 2Na2O.1CaO.3SiO2 are presented. Optical and scanning electron microscopy observations, X-ray diffraction, infrared and Raman microprobe spectroscopic measurements of the modified surface of this glass show strong evidences that it is formed essentially by a crystalline carbonate layer.
Resumo:
The electrochemical performance of electrodeposited Ti/β-PbO2 and Ti-Pt/β-PbO2 anodes was galvanostatically evaluated (batch mode, 50 mA cm-2) to degrade the Direct Yellow 86 dye (100 or 200 mg L-1 in 0.1 mol L-1 Na2SO4 + 1.5 g L-1 NaCl), investigating the effect of pH and temperature. Similar results were obtained for both electrodes and the best conditions for removal of color and chemical oxygen demand are pH 7 and 40 °C, when 90% decolorization is attained by passing a charge of only ~0.13 A h L-1 and total mineralization is achieved with expenditure of ~5 kW h m-3.