15 resultados para GFP-LIKE PROTEINS
em Scielo Saúde Pública - SP
Resumo:
Evidence based on immunological cross-reactivity and anti-diabetic properties has suggested the presence of insulin-like peptides in plants. The objective of the present study was to investigate the presence of insulin-like proteins in the leaves of Bauhinia variegata ("pata-de-vaca", "mororó"), a plant widely utilized in popular medicine as an anti-diabetic agent. We show that an insulin-like protein was present in the leaves of this plant. A chloroplast protein with a molecular mass similar to that of bovine insulin was extracted from 2-mm thick 15% SDS-PAGE gels and fractionated with a 2 x 24 cm Sephadex G-50 column. The activity of this insulin-like protein (0.48 mg/mL) on serum glucose levels of four-week-old Swiss albino (CF1) diabetic mice was similar to that of commercial swine insulin used as control. Further characterization of this molecule by reverse-phase hydrophobic HPLC chromatographic analysis as well as its antidiabetic activity on alloxan-induced mice showed that it has insulin-like properties. Immunolocalization of the insulin-like protein in the leaves of B. variegata was performed by transmission electron microscopy using a polyclonal anti-insulin human antibody. Localization in the leaf blades revealed that the insulin-like protein is present mainly in chloroplasts where it is also found associated with crystals which may be calcium oxalate. The presence of an insulin-like protein in chloroplasts may indicate its involvement in carbohydrate metabolism. This finding has strengthened our previous results and suggests that insulin-signaling pathways have been conserved through evolution.
Resumo:
Calpains are calcium-dependent cysteine proteinases found in all living organisms and are involved in diverse cellular processes. Calpain-like proteins have been reported after in silico analysis of the Tritryps genome and are believed to play important roles in cell functions of trypanosomatids. We describe the characterization of a member of this family, which is differentially expressed during the life-cycle of Trypanosoma cruzi.
Resumo:
IntroductionKala-azar is a disease resulting from infection by Leishmania donovani and Leishmania infantum. Most patients with the disease exhibit prolonged fever, wasting, anemia and hepatosplenomegaly without complications. However, some patients develop severe disease with hemorrhagic manifestations, bacterial infections, jaundice, and edema dyspnea, among other symptoms, followed by death. Among the parasite molecules that might influence the disease severity are the macrophage migration inhibitory factor-like proteins (MIF1 and MIF2) and N-acetylglucosamine-1-phosphotransferase (NAGT), which act in the first step of protein N-glycosylation. This study aimed to determine whether MIF1, MIF2 and NAGT are virulence factors for severe kala-azar.MethodsTo determine the parasite genotype in kala-azar patients from Northeastern Brazil, we sequenced the NAGT genes of L. infantum from 68 patients as well as the MIF1 and MIF2 genes from 76 different subjects with diverse clinical manifestations. After polymerase chain reaction (PCR), the fragments were sequenced, followed by polymorphism identification.ResultsThe nucleotide sequencing of the 144 amplicons revealed the absence of genetic variability of the NAGT, MIF1 and MIF2 genes between the isolates. The conservation of these genes suggests that the clinical variability of kala-azar does not depend upon these genes. Additionally, this conservation suggests that these genes may be critical for parasite survival.ConclusionsNAGT, MIF1 and MIF2 do not alter the severity of kala-azar. NAGT, MIF1 and MIF2 are highly conserved among different isolates of identical species and exhibit potential for use in phylogenetic inferences or molecular diagnosis.
Resumo:
Chagas disease (CD) causes the highest burden of parasitic diseases in the Western Hemisphere and is therefore a priority for drug research and development. Platelet-activating factor (PAF) causes the CD parasite Trypanosoma cruzi to differentiate, which suggests that the parasite may express PAF receptors. Here, we explored the T. cruzi proteome for PAF receptor-like proteins. From a total of 23,000 protein sequences, we identified 29 hypothetical proteins that are predicted to have seven transmembrane domains (TMDs), which is the main characteristic of the G protein-coupled receptors (GPCRs), including the PAF receptor. The TMDs of these sequences were independently aligned with domains from 25 animal PAF receptors and the sequences were analysed for conserved residues. The conservation score mean values for the TMDs of the hypothetical proteins ranged from 31.7-44.1%, which suggests that if the putative T. cruzi PAF receptor is among the sequences identified, the TMDs are not highly conserved. These results suggest that T. cruzi contains several GPCR-like proteins and that one of these GPCRs may be a PAF receptor. Future studies may further validate the PAF receptor as a target for CD chemotherapy.
Resumo:
Leptospirosis is a zoonotic disease caused by pathogenic spirochetes of theLeptospira genus. Vaccination with bacterins has severe limitations. Here, we evaluated the N-terminal region of the leptospiral immunoglobulin-like B protein (LigBrep) as a vaccine candidate against leptospirosis using immunisation strategies based on DNA prime-protein boost, DNA vaccine, and subunit vaccine. Upon challenge with a virulent strain ofLeptospira interrogans, the prime-boost and DNA vaccine approaches induced significant protection in hamsters, as well as a specific IgG antibody response and sterilising immunity. Although vaccination with recombinant fragment of LigBrep also produced a strong antibody response, it was not immunoprotective. These results highlight the potential of LigBrep as a candidate antigen for an effective vaccine against leptospirosis and emphasise the use of the DNA prime-protein boost as an important strategy for vaccine development.
Resumo:
Cajal bodies (CB) are ubiquitous nuclear structures involved in the biogenesis of small nuclear ribonucleoproteins and show narrow association with the nucleolus. To identify possible relationships between CB and the nucleolus, the localization of coilin, a marker of CB, and of a set of nucleolar proteins was investigated in cultured PtK2 cells undergoing micronucleation. Nocodazol-induced micronucleated cells were examined by double indirect immunofluorescence with antibodies against coilin, fibrillarin, NOR-90/hUBF, RNA polymerase I, PM/Scl, and To/Th. Cells were imaged on a BioRad 1024-UV confocal system attached to a Zeiss Axiovert 100 microscope. Since PtK2 cells possess only one nucleolus organizer region, micronucleated cells presented only one or two micronuclei containing nucleolus. By confocal microscopy we showed that in most micronuclei lacking a typical nucleolus a variable number of round structures were stained by antibodies against fibrillarin, NOR-90/hUBF protein, and coilin. These bodies were regarded as CB-like structures and were not stained by anti-PM/Scl and anti-To/Th antibodies. Anti-RNA polymerase I antibodies also reacted with CB-like structures in some micronuclei lacking nucleolus. The demonstration that a set of proteins involved in RNA/RNP biogenesis, namely coilin, fibrillarin, NOR-90/hUBF, and RNA polymerase I gather in CB-like structures present in nucleoli-devoid micronuclei may contribute to shed some light into the understanding of CB function.
Resumo:
The symptomatic phases of many inflammatory diseases are characterized by migration of large numbers of neutrophils (PMN) across a polarized epithelium and accumulation within a lumen. For example, acute PMN influx is common in diseases of the gastrointestinal system (ulcerative colitis, Crohn's disease, bacterial enterocolitis, gastritis), hepatobiliary system (cholangitis, acute cholecystitis), respiratory tract (bronchial pneumonia, bronchitis, cystic fibrosis, bronchiectasis), and urinary tract (pyelonephritis, cystitis). Despite these observations, the molecular basis of leukocyte interactions with epithelial cells is incompletely understood. In vitro models of PMN transepithelial migration typically use N-formylated bacterial peptides such as fMLP in isolation to drive human PMNs across epithelial monolayers. However, other microbial products such as lipopolysaccharide (LPS) are major constituents of the intestinal lumen and have potent effects on the immune system. In the absence of LPS, we have shown that transepithelial migration requires sequential adhesive interactions between the PMN beta2 integrin CD11b/CD18 and JAM protein family members. Other epithelial ligands appear to be abundantly represented as fucosylated proteoglycans. Further studies indicate that the rate of PMN migration across mucosal surfaces can be regulated by the ubiquitously expressed transmembrane protein CD47 and microbial-derived factors, although many of the details remain unclear. Current data suggests that Toll-like receptors (TLR), which recognize specific pathogen-associated molecular patterns (PAMPs), are differentially expressed on both leukocytes and mucosal epithelial cells while serving to modulate leukocyte-epithelial interactions. Exposure of epithelial TLRs to microbial ligands has been shown to result in transcriptional upregulation of inflammatory mediators whereas ligation of leukocyte TLRs modulate specific antimicrobial responses. A better understanding of these events will hopefully provide new insights into the mechanisms of epithelial responses to microorganisms and ideas for therapies aimed at inhibiting the deleterious consequences of mucosal inflammation.
Resumo:
Members of the high temperature requirement A (HtrA) family of chaperone proteases have been shown to play a role in bacterial pathogenesis. In a recent report, we demonstrated that the gene ML0176, which codes for a predicted HtrA-like protease, a gene conserved in other species of mycobacteria, is transcribed by Mycobacterium leprae in human leprosy lesions. In the present study, the recombinant ML0176 protein was produced and its enzymatic properties investigated. M. lepraerecombinant ML0176 was able to hydrolyse a variety of synthetic and natural peptides. Similar to other HtrA proteins, this enzyme displayed maximum proteolytic activity at temperatures above 40°C and was completely inactivated by aprotinin, a protease inhibitor with high selectivity for serine proteases. Finally, analysis of M. leprae ML0176 specificity suggested a broader cleavage preference than that of previously described HtrAs homologues. In summary, we have identified an HtrA-like protease in M. lepraethat may constitute a potential new target for the development of novel prophylactic and/or therapeutic strategies against mycobacterial infections.
Resumo:
The flaviviral envelope proteins, E protein and precursor membrane protein, are mainly associated with the endoplasmic reticulum (ER) through two transmembrane (TM) domains that are exposed to the luminal face of this compartment. Their retention is associated with the viral assembly process. ER-retrieval motifs were mapped at the carboxy terminus of these envelope proteins. A recombinant yellow fever (YF) 17D virus expressing the reporter green fluorescent protein (GFP) with the stem-anchor (SA) region of E protein fused to its carboxy terminus was subjected to distinct genetic mutations in the SA sequence to investigate their effect on ER retention. Initially, we introduced progressive deletions of the stem elements (H1, CS and H2). In a second set of mutants, the effect of a length increase for the first TM anchor region was evaluated either by replacing it with the longer TM of human LAMP-1 or by the insertion of the VALLLVA sequence into its carboxy terminus. We did not detect any effect on the GFP localisation in the cell, which remained associated with the ER. Further studies should be undertaken to elucidate the causes of the ER retention of recombinant proteins expressed at the intergenic E/NS1 region of the YF 17D virus polyprotein.
Resumo:
Endometrium is one of the fastest growing human tissues. Sex hormones, estrogen and progesterone, in interaction with several growth factors, control its growth and differentiation. Insulin-like growth factor 1 (IGF-1) interacts with cell surface receptors and also with specific soluble binding proteins. IGF-binding proteins (IGF-BP) have been shown to modulate IGF-1 action. Of six known isoforms, IGF-BP-1 has been characterized as a marker produced by endometrial stromal cells in the late secretory phase and in the decidua. In the current study, IGF-1-BP concentration and affinity in the proliferative and secretory phase of the menstrual cycle were measured. Endometrial samples were from patients of reproductive age with regular menstrual cycles and taking no steroid hormones. Cytosolic fractions were prepared and binding of 125I-labeled IGF-1 performed. Cross-linking reaction products were analyzed by SDS-polyacrylamide gel electrophoresis (7.5%) followed by autoradiography. 125I-IGF-1 affinity to cytosolic proteins was not statistically different between the proliferative and secretory endometrium. An approximately 35-kDa binding protein was identified when 125I-IGF-1 was cross-linked to cytosol proteins. Secretory endometrium had significantly more IGF-1-BP when compared to proliferative endometrium. The specificity of the cross-linking process was evaluated by the addition of 100 nM unlabeled IGF-1 or insulin. Unlabeled IGF-1 totally abolished the radioactivity from the band, indicating specific binding. Insulin had no apparent effect on the intensity of the labeled band. These results suggest that IGF-BP could modulate the action of IGF-1 throughout the menstrual cycle. It would be interesting to study this binding protein in other pathologic conditions of the endometrium such as adenocarcinomas and hyperplasia.
Resumo:
It has been demonstrated that the alpha2 chain of laminin-2 present on the surface of Schwann cells is involved in the process of attachment of Mycobacterium leprae to these cells. Searching for M. leprae laminin-binding molecules, in a previous study we isolated and characterized the cationic proteins histone-like protein (Hlp) and ribosomal proteins S4 and S5 as potential adhesins involved in M. leprae-Schwann cell interaction. Hlp was shown to bind alpha2-laminins and to greatly enhance the attachment of mycobacteria to ST88-14 Schwann cells. In the present study, we investigated the laminin-binding capacity of the ribosomal proteins S4 and S5. The genes coding for these proteins were PCR amplified and their recombinant products were shown to bind alpha2-laminins in overlay assays. However, when tested in ELISA-based assays and in adhesion assays with ST88-14 cells, in contrast to Hlp, S4 and S5 failed to bind laminin and act as adhesins. The laminin-binding property and adhesin capacity of two basic host-derived proteins were also tested, and only histones, but not cytochrome c, were able to increase bacterial attachment to ST88-14 cells. Our data suggest that the alanine/lysine-rich sequences shared by Hlp and eukaryotic H1 histones might be involved in the binding of these cationic proteins to laminin.
Resumo:
Reconstitution of membrane proteins into lipid bilayers is a powerful tool to analyze functional as well as structural areas of membrane protein research. First, the proper incorporation of a purified membrane protein into closed lipid vesicles, to produce proteoliposomes, allows the investigation of transport and/or catalytic properties of any membrane protein without interference by other membrane components. Second, the incorporation of a large amount of membrane proteins into lipid bilayers to grow crystals confined to two dimensions has recently opened a new way to solve their structure at high resolution using electron crystallography. However, reconstitution of membrane proteins into functional proteoliposomes or 2-D crystallization has been an empirical domain, which has been viewed for a long time more like "black magic" than science. Nevertheless, in the last ten years, important progress has been made in acquiring knowledge of lipid-protein-detergent interactions and has permitted to build upon a set of basic principles that has limited the empirical approach of reconstitution experiments. Reconstitution strategies have been improved and new strategies have been developed, facilitating the success rate of proteoliposome formation and 2-D crystallization. This review deals with the various strategies available to obtain proteoliposomes and 2-D crystals from detergent-solubilized proteins. It gives an overview of the methods that have been applied, which may be of help for reconstituting more proteins into lipid bilayers in a form suitable for functional studies at the molecular level and for high-resolution structural analysis.
Resumo:
Azospirillum brasilense is a diazotroph found in association with important agricultural crops. In this organism, the regulation of nitrogen fixation by ammonium ions involves several proteins including the uridylyltransferase/uridylyl-removing enzyme, GlnD, which reversibly uridylylates the two PII proteins, GlnB and GlnZ, in response to the concentration of ammonium ions. In the present study, the uridylylation/deuridylylation cycle of A. brasilense GlnB and GlnZ proteins by GlnD was reconstituted in vitro using the purified proteins. The uridylylation assay was analyzed using non-denaturing polyacrylamide gel electrophoresis and fluorescent protein detection. Our results show that the purified A. brasilense GlnB and GlnZ proteins were uridylylated by the purified A. brasilense GlnD protein in a process dependent on ATP and 2-oxoglutarate. The dependence on ATP for uridylylation was similar for both proteins. On the other hand, at micromolar concentration of 2-oxoglutarate (up to 100 µM), GlnB uridylylation was almost twice that of GlnZ, an effect that was not observed at higher concentrations of 2-oxoglutarate (up to 10 mM). Glutamine inhibited uridylylation and stimulated deuridylylation of both GlnB and GlnZ. However, glutamine seemed to inhibit GlnZ uridylylation more efficiently. Our results suggest that the differences in the uridylylation pattern of GlnB and GlnZ might be important for fine-tuning of the signaling pathway of cellular nitrogen status in A. brasilense.
Resumo:
Chagas' myocardiopathy, caused by the intracellular protozoan Trypanosoma cruzi, is characterized by microvascular alterations, heart failure and arrhythmias. Ischemia and arrythmogenesis have been attributed to proteins shed by the parasite, although this has not been fully demonstrated. The aim of the present investigation was to study the effect of substances shed by T. cruzi on ischemia/reperfusion-induced arrhythmias. We performed a triple ischemia-reperfusion (I/R) protocol whereby the isolated beating rat hearts were perfused with either Vero-control or Vero T. cruzi-infected conditioned medium during the different stages of ischemia and subsequently reperfused with Tyrode's solution. ECG and heart rate were recorded during the entire experiment. We observed that triple I/R-induced bradycardia was associated with the generation of auricular-ventricular blockade during ischemia and non-sustained nodal and ventricular tachycardia during reperfusion. Interestingly, perfusion with Vero-infected medium produced a delay in the reperfusion-induced recovery of heart rate, increased the frequency of tachycardic events and induced ventricular fibrillation. These results suggest that the presence of parasite-shed substances in conditioned media enhances the arrhythmogenic effects that occur during the I/R protocol.
Resumo:
Baru (Dipteryx alata Vog.) is an abundant legume in the Brazilian Savanna. Its nuts can be exploited sustainably using its protein and lipid fractions. This study aimed to analyze the proteins of the nuts present in the defatted flour and protein concentrate in terms of their functional properties, the profile of their fractions, and the in vitro digestibility. The flour was defatted with hexane and extracted at the pH of higher protein solubility to obtain the protein concentrate. The electrophoretic profile of the protein fractions was evaluated in SDS-PAGE gel. The functional properties of the proteins indicate the possibility of their use in various foods, like soybeans providing water absorption capacity, oil absorption capacity, emulsifying properties, and foamability. Globulins, followed by the albumins, are the major fractions of the flour and protein concentrate, respectively. Digestibility was greater for the concentrate than for the defatted flour.