57 resultados para Doping atoms
em Scielo Saúde Pública - SP
Resumo:
ZnO is a semiconductor material largely employed in the development of several electronic and optical devices due to its unique electronic, optical, piezo-, ferroelectric and structural properties. This study evaluates the properties of Ba-doped wurtzite-ZnO using quantum mechanical simulations based on the Density Functional Theory (DFT) allied to hybrid functional B3LYP. The Ba-doping caused increase in lattice parameters and slight distortions at the unit cell angle in a wurtzite structure. In addition, the doping process presented decrease in the band-gap (Eg) at low percentages suggesting band-gap engineering. For low doping amounts, the wavelength characteristic was observed in the visible range; whereas, for middle and high doping amounts, the wavelength belongs to the Ultraviolet range. The Ba atoms also influence the ferroelectric property, which is improved linearly with the doping amount, except for doping at 100% or wurtzite-BaO. The ferroelectric results indicate the ZnO:Ba is an strong option to replace perovskite materials in ferroelectric and flash-type memory devices.
Resumo:
Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry was used for the identification of forty doping agents. The improvement in the specificity was remarkable, allowing the resolution of analytes that could not be done by one-dimensional chromatographic systems. The sensitivity observed for different classes of prohibited substances was clearly below the value required by the World Anti-Doping Agency. In addition time-of-flight mass spectrometry gives full spectrum for all analytes without any interference from the matrix, resulting in selectivity improvements. These results could support the implementation of an exhaustive monitoring approach for hundreds of doping agents in a single injection.
Resumo:
Semiempirical calculations at the level of PM3 of theory were carried out to study the structural and electronic properties of C80 and some of its doped derivatives with the elements of group III and V at the level of PM3 of theory. We have selected these elements to be substituted in the fullerene-C80 cage in order to show the effect of such structural change on the electronic properties of the molecules studied. The theoretical IR spectra, some of physical and chemical properties of the molecules studied are obtained and discussed.
Resumo:
The present investigation reports on the interaction of the C/O triplet atoms inside of the [60] fullerene (C60) species with small polar molecules (H²O, CH³OH, HF, NH³) using Density Functional Theory (DFT) calculations. The calculations show that in all the computed cases the encapuslated complexes with the molecules are more stable than without internal atoms.
Resumo:
Recent biotechnological advances have permitted the manipulation of genetic sequences to treat several diseases in a process called gene therapy. However, the advance of gene therapy has opened the door to the possibility of using genetic manipulation (GM) to enhance athletic performance. In such ‘gene doping’, exogenous genetic sequences are inserted into a specific tissue, altering cellular gene activity or leading to the expression of a protein product. The exogenous genes most likely to be utilized for gene doping include erythropoietin (EPO), vascular endothelial growth factor (VEGF), insulin-like growth factor type 1 (IGF-1), myostatin antagonists, and endorphin. However, many other genes could also be used, such as those involved in glucose metabolic pathways. Because gene doping would be very difficult to detect, it is inherently very attractive for those involved in sports who are prepared to cheat. Moreover, the field of gene therapy is constantly and rapidly progressing, and this is likely to generate many new possibilities for gene doping. Thus, as part of the general fight against all forms of doping, it will be necessary to develop and continually improve means of detecting exogenous gene sequences (or their products) in athletes. Nevertheless, some bioethicists have argued for a liberal approach to gene doping.
Resumo:
Este artículo pretende alertar de las contradicciones inherentes a la definición del deporte con relación a la salud y la educación. Tomando como referencia el dopaje, intenta elevar al debate público las repercusiones que la industria del rendimiento deportivo tiene en la salud pública. La práctica clandestina del dopaje conduce a muchos deportistas profesionales y aspirantes a la inseguridad sanitaria y a la desorientación ética de los practicantes aficionados y enseñantes del deporte. Por ello, se plantea la necesidad de discutir una eventual despenalización del dopaje en el deporte profesional.
Resumo:
Objetivou-se apresentar reflexões sobre a relação entre o doping e a saúde pública, em face do atual cenário regulatório que cerca o doping no mundo e os recorrentes escândalos que vinculam esportistas de ponta ao doping em várias modalidades desportivas. O estudo teve, como referência, os riscos à saúde que o doping representa e, como horizonte, as opções regulatórias adotadas pela comunidade internacional e pelas federações desportivas para o controle e fiscalização desse tipo de prática antidesportiva e arriscada. Buscou-se ponderar sobre o necessário equilíbrio entre esporte e saúde, bem como sobre o papel do Estado na preservação desse equilíbrio.
Resumo:
The basidiospores of Pisolithus sp. contain large amounts of lipids, indicating provision for future germination in the host rhizosphere. However, the accumulation, composition, and mobilization of lipids during formation and germination of these spores are largely unknown. In this study, lipid storage and fatty acid composition during basidiosporogenesis were analyzed in fresh basidiocarps using bright-field microscopy and gas chromatography. Abundant lipid bodies are found in the hyphae, basidia, and basidiospores of fungal basidiocarps. This evidences a considerable C transport in the basidiocarp to meet the C demand during basidiospore formation. Fatty acid composition analysis revealed the presence of 24 compounds with chains of 9 to 18 C atoms, either saturated or insaturated, with one or two insaturations. The fatty acid composition and content varied according to the developmental stage of the peridioles. In free basidiospores, the predominant compounds were 16:0, 16:1w5c, 18:1w9c, and 18:2w6,9c/18:0ante, at concentrations of 76, 46, 192, and 51 µg g-1 dry matter, respectively. Our results indicate that oleic acid is the major constituent of lipid reserves in Pisolithus sp. basidiospores. Further studies are being conducted to determine the factors that induce lipid mobilization during spore germination.
Resumo:
The response to B in agricultural systems of sugar cane is still an unexplored issue; B application has however recently been widely publicized and used with a certain degree of frequency. The use of 10B-labeled fertilizers may further contribute to clarify this practice. With the objective of evaluating sugar cane use of B (10B) derived from fertilizer (boric acid), an experiment was conducted under field conditions in the 2005/2006 growing season. The experiment consisted of the installation of microplots (2 x 1.5 m) where 4 kg ha-1 B (boric acid with 85.95 % in 10B atoms) dissolved in water was applied 90 days after planting (May 2005). The solution was applied to the soil on both sides of the plant row at a distance of 20 cm. After harvest (June 2006) the B content and 10B abundance in % atoms in all parts of the sugar cane plants (stalks, dry leaves, tips and roots) were determined. Results showed that the total B accumulated was 471 g ha-1 in the entire plant (35 % in the stalks, 22 % in the dry leaves, 9 % in the tips and 34 % in the roots). The sugar cane plants used on average 14 % of the total accumulated B in the above-ground part (44 g ha-1) and 11 % in the roots (19 g ha-1), totaling 13 % in the entire plant (63 g ha-1). The recovery of 10B-fertilizer by sugar cane plants was low, around 2 % of the total applied amount.
Resumo:
Sulphur plays an essential role in plants and is one of the main nutrients in several metabolic processes. It has four stable isotopes (32S, 33S, 34S, and 36S) with a natural abundance of 95.00, 0.76, 4.22, and 0.014 in atom %, respectively. A method for isotopic determination of S by isotope-ratio mass spectrometry (IRMS) in soil samples is proposed. The procedure involves the oxidation of organic S to sulphate (S-SO4(2-)), which was determined by dry combustion with alkaline oxidizing agents. The total S-SO4(2-) concentration was determined by turbidimetry and the results showed that the conversion process was adequate. To produce gaseous SO2 gas, BaSO4 was thermally decomposed in a vacuum system at 900 ºC in the presence of NaPO3. The isotope determination of S (atom % 34S atoms) was carried out by isotope ratio mass spectrometry (IRMS). In this work, the labeled material (K2(34)SO4) was used to validate the method of isotopic determination of S; the results were precise and accurate, showing the viability of the proposed method.
Resumo:
Hund's maximum multiplicity rule as stated in most elementary and intermediate level textbooks on general and inorganic chemistry and usually taught at the college and undergraduate level is incorrect. It is true that electrons entering a subshell of an atom tend to occupy the orbitals singly as far as possible but not necessarily with parallel spins. Also, proper definitions and correct use of terms like configuration, microstate, spectroscopic term, level and state are essential if confusion on the part of the student, especially the beginner, is to be avoided.
Resumo:
The fascinating search of the inner boundaries of the Universe, has been entangled, since the birth of greek philosophy 25 centuries ago, with the main epistemological changes in the History of Science. This paper does not intend to present a systematic description of the discovery of the elementary particles. By stressing the main achievements of the knowledge of matter's structure and their dependence on symmetry arguments, it is argued that even considering profound differences in each historical period, there is a paradgima of atom shared by Chemistry and Particle Physics. This text could help High School Teachers of Chemistry and Physics, as well as motivate them, in the challenge of explaining to their pupils how the idea of atom evolved.
Resumo:
Several authors in the 17th century used the atomic hypothesis to explain observable phenomena. This paper analyzes some ideas about chemical transformation proposed by the English physician Walter Charleton. In Physiologia Epicuro-Gassendo-Charltoniana (London, 1654), Charleton examined philosophical aspects of the atomic theory, and suggested that the best explanation for all natural phenomena would be only in terms of atoms and their motions. Sometimes, however, he had to attribute to the atoms some kind of "internal virtue", to explain more complex properties of the matter. His idea of "element", and the little use of experimentation and quantification, also limited the range of Charleton's theory.
Resumo:
A review is given about the most relevant advances on the analytical applications of conducting polymers in potentiometric sensors. These organic polymers represent a new class of materials with conducting properties due to its doping by ions. Several polymers already were synthesized such as polypyrrole, polyaniline, polythiophene, among others. Particular attention is devoted to the main advantages supplied by ion selective electrodes and gas sensors using conducting polymers, as well as the incorporation of bioactive elements in these polymers for the construction of biosensors. The correlation between structure, stability and ability to ion exchange of some conducting polymers applied as potentiometric transducers, is discussed.
Resumo:
The synthesis, characterization and some applications in catalysis of pillared clays are described at an introductory level. The use of x-ray diffraction, surface area measurements, thermal analysis, IR spectrophotometry and solid-state NMR in the characterization of pillared clays is briefly discussed. Pillarization followed by doping or introduction of metal clusters into clays could lead to the development of selective heterogeneous catalysts.