58 resultados para Critical Reynolds Number
em Scielo Saúde Pública - SP
Resumo:
Polarization curves experimentally obtained in the electro-dissolution of iron in a 1 M H2SO4 solution using a rotating disc as the working electrode present a current instability region within the range of applied voltage in which the current is controlled by mass transport in the electrolyte. According to the literature (Barcia et. al., 1992) the electro-dissolution process leads to the existence of a viscosity gradient in the interface metal-solution, which leads to a velocity field quantitatively different form the one developed in uniform viscosity conditions and may affect the stability of the hydrodynamic field. The purpose of this work is to investigate whether a steady viscosity profile, depending on the distance to the electrode surface, affects the stability properties of the classic velocity field near a rotating disc. Two classes of perturbations are considered: perturbations monotonically varying along the radial direction, and perturbations periodically modulated along the radial direction. The results show that the hydrodynamic field is always stable with respect to the first class of perturbations and that the neutral stability curves are modified by the presence of a viscosity gradient in the second case, in the sense of reducing the critical Reynolds number beyond which perturbations are amplified. This result supports the hypothesis that the current oscillations observed in the polarization curve may originate from a hydrodynamic instability.
Resumo:
Gully erosion occurs by the combined action of splash, sheetwash and rill-wash (interrill and rill erosion). These erosion processes have a great capacity for both sediment production and sediment transport. The objectives of this experiment were to evaluate hydrological and sediment transport in a degraded area, severely dissected by gullies; to assess the hydraulic flow characteristics and their aggregate transport capacity; and to measure the initial splash erosion rate. In the study area in Guarapuava, State of Paraná, Brazil (lat 25º 24' S; long 51º24' W; 1034 m asl), the soil was classified as Cambissolo Húmico alumínico, with the following particle-size composition: sand 0.116 kg kg-1; silt 0.180 kg kg-1; and clay 0.704 kg kg-1. The approach of this research was based on microcatchments formed in the ground, to study the hydrological response and sediment transport. A total of eight rill systems were simulated with dry and wet soil. An average rainfall of 33.7 ± 4.0 mm was produced for 35 to 54 min by a rainfall simulator. The equipment was installed, and a trough was placed at the end of the rill to collect sediments and water. During the simulation, the following variables were measured: time to runoff, time to ponding, time of recession, flow velocity, depth, ratio of the initial splash and grain size. The rainsplash of dry topsoil was more than twice as high as under moist conditions (5 g m-2 min-1 and 2 g m-2 min-1, respectively). The characteristics of the flow hydraulics indicate transition from laminar to turbulent flow [Re (Reynolds number) 1000-2000]. In addition, it was observed that a flow velocity of 0.12 m s-1 was the threshold for turbulent flow (Re > 2000), especially at the end of the rainfall simulation. The rill flow tended to be subcritical [Fr (Froude Number) < 1.0]. The variation in hydrological attributes (infiltration and runoff) was lower, while the sediment yield was variable. The erosion in the rill systems was characterized as limited transport, although the degraded area generated an average of 394 g m-2 of sediment in each simulation.
Resumo:
The presence of compacted layers in soils can induce subprocesses (e.g., discontinuity of water flow) and induces soil erosion and rill development. This study assesses how rill erosion in Oxisols is affected by a plow pan. The study shows that changes in hydraulic properties occur when the topsoil is eroded because the compacted layer lies close below the surface. The hydraulic properties that induce sediment transport and rill formation (i.e., hydraulic thresholds at which these processes occur) are not the same. Because of the resistance of the compacted layer, the hydraulic conditions leading to rill incision on the soil surface differed from the conditions inducing rill deepening. The Reynolds number was the best hydraulic predictor for both processes. The formed rills were shallow and could easily be removed by tillage between crops. However, during rill development, large amounts of soil and contaminants could also be transferred.
Resumo:
The objective of the present work is the experimental determination of pressure drop coefficients (loss coefficients) for elliptic and circular sections in one, two and three-row arrangements of plate fin and tube heat exchangers. The experiments permitted to correlate the dimensionless loss coefficient with the flow Reynolds number in the rectangular channel formed by the plate fins. The experimental technique consisted of the measurement of the longitudinal pressure distribution along the flow channel, for several values of air mass flow rate. The total number of data runs, each one characterized by the flow Reynolds number, was 216. The present geometry is used in compact heat exchangers for air conditioning systems, heaters, radiators, and others. Also, it is verified the influence of the utilization of elliptic tubes, instead of circular ones, in the pressure drop. The measurements were performed for Reynolds numbers ranging from 200 to 1900.
Resumo:
The classical treatment of rough wall turbulent boundary layers consists in determining the effect the roughness has on the mean velocity profile. This effect is usually described in terms of the roughness function delta U+. The general implication is that different roughness geometries with the same delta U+ will have similar turbulence characteristics, at least at a sufficient distance from the roughness elements. Measurements over two different surface geometries (a mesh roughness and spanwise circular rods regularly spaced in the streamwise direction) with nominally the same delta U+ indicate significant differences in the Reynolds stresses, especially those involving the wall-normal velocity fluctuation, over the outer region. The differences are such that the Reynolds stress anisotropy is smaller over the mesh roughness than the rod roughness. The Reynolds stress anisotropy is largest for a smooth wall. The small-scale anisotropy and interniittency exhibit much smaller differences when the Taylor microscale Reynolds number and the Kolmogorov-normalized mean shear are nominally the same. There is nonetheless evidence that the small-scale structure over the three-dimensional mesh roughness conforms more closely with isotropy than that over the rod-roughened and smooth walls.
Resumo:
Experiments were performed to determine average heat transfer coefficients and friction factors for turbulent flow through annular ducts with pin fins. The measurements were carried out by means of a double-pipe heat exchanger. The total number of pins attached to the inner wall of the annular region was 560. The working fluids were air, flowing in the annular channel, and water through the inner circular tube. The average heat transfer coefficients of the pinned air-side were obtained from the experimental determination of the overall heat transfer coefficients of the heat exchanger and from the knowledge of the average heat transfer coefficients of the circular pipe (water-side), which could be found in the pertinent literature. To attain fully developed conditions, the heat exchanger was built with additional lengths before and after the test section. The inner circular duct of the heat exchanger and the pin fins were made of brass. Due to the high thermal conductivity of the brass, the small tube thickness and water temperature variation, the surface of the internal tube was practically isothermal. The external tube was made of an industrial plastic which was insulated from the environment by means of a glass wool batt. In this manner, the outer surface of the annular channel can be considered adiabatic. The results are presented in dimensionless forms, in terms of average Nusselt numbers and friction factors as functions of the flow Reynolds number, ranging from 13,000 to 80,000. The pin fin efficiency, which depends on the heat transfer coefficient, is also determined as a function of dimensionless parameters. A comparison of the present results with those for smooth sections (without pins) is also presented. The purpose of such a comparison is to study the influence of the presence of the pins on the pressure drop and heat transfer rate.
Resumo:
An experimental investigation is performed in a turbulent flow in a seven wire-wrapped rod bundle, mounted in an open air facility. Static pressure distributions are measured on central and peripheral rods. By using a Preston tube, the wall shear stress profiles are experimentally obtained along the perimeter of the rods. The geometric parameters of the test section are P/D=1.20 and H/D=15. The measuring section is located at L/D=40 from the air inlet. It is observed that the dimensionless static pressure and wall shear stress profiles are nearly independent of the Reynolds number and strongly dependent of the wire-spacer position, with abrupt variations of the parameters in the neighborhood of the wires.
Resumo:
This work describes a lumped parameter mathematical model for the prediction of transients in an aerodynamic circuit of a transonic wind tunnel. Control actions to properly handle those perturbations are also assessed. The tunnel circuit technology is up to date and incorporates a novel feature: high-enthalpy air injection to extend the tunnels Reynolds number capability. The model solves the equations of continuity, energy and momentum and defines density, internal energy and mass flow as the basic parameters in the aerodynamic study as well as Mach number, stagnation pressure and stagnation temperature, all referred to test section conditions, as the main control variables. The tunnel circuit response to control actions and the stability of the flow are numerically investigated. Initially, for validation purposes, the code was applied to the AWT ("Altitude Wind Tunnel" of NASA-Lewis). In the sequel, the Brazilian transonic wind tunnel was investigated, with all the main control systems modeled, including injection.
Resumo:
An axisymmetric supersonic flow of rarefied gas past a finite cylinder was calculated applying the direct simulation Monte Carlo method. The drag force, the coefficients of pressure, of skin friction, and of heat transfer, the fields of density, of temperature, and of velocity were calculated as function of the Reynolds number for a fixed Mach number. The variation of the Reynolds number is related to the variation of the Knudsen number, which characterizes the gas rarefaction. The present results show that all quantities in the transition regime (Knudsen number is about the unity) are significantly different from those in the hydrodynamic regime, when the Knudsen number is small.
Resumo:
The unsteady, viscous, supersonic flow over a spike-nosed body of revolution is numerically investigated by solving the Navier-Stokes equations. The time-accurate computations are performed employing an implicit algorithm based on the second-order time-accurate LU-SGS scheme with the incorporation of a subiteration procedure to maintain time accuracy. The characteristics of the flow field for a Mach number of 3.0, Reynolds number of 7.87 x 10(6)/m, and angles of attack of 5 and 10 degrees are described. Self-sustained asymmetric shock wave oscillations were observed in the numerical computations for these angles of attack. The main characteristic of the flow field, as well as its influence on drag coefficient is discussed.
Resumo:
OBJECTIVE: The study examines the implications for shiftworkers of applying different numbers of teams in the organization of shiftwork. METHODS: The participating operators came from five different companies applying continuous shift rotation systems. The companies shared the same product organization and a common corporate culture belonging to the same multinational company. Each company had a shift system consisting of four, five or six teams, with the proportion of shifts outside day work decreasing as the number of teams increased. Questionnaire and documentary data were used as data sources. RESULTS: Operators in systems with additional teams had more daywork but also more irregular working hours due to both overtime and schedule changes. Operators using six teams used fewer social compensation strategies. Operators in four teams were most satisfied with their work hours. Satisfaction with the time available for various social activities outside work varied inconsistently between the groups. CONCLUSIONS: In rotating systems the application of more teams reduces the number of shifts outside day work. This apparent improvement for shiftworkers was counteracted by a concomitant irregularity produced by greater organizational requirements for flexibility. The balance of this interaction was found to have a critical impact on employees.
Resumo:
This paper aims to study the best way to express the parasitemia of Trypanosoma cruzi's experimentally infected animals. Individual scores may have a great variability, not emphasized by the majority of the authors. A group of 50 rats infected with 1x10(6) trypomastigotes of T. cruzi Y strain was used and the parasitemia was estimated by BRENER' s method. The results showed that the median can avoid false results due to very high or low parasitemias but it does not have the mathematic properties necessary for analysis of variance. The comparison of the means of the original and transformed data, with their respective coefficients of variability (CV), showed that the logarithmic mean (Mlog) have the minor value of CV. Therefore, the Mlog is the best way to express the parasitemia when the data show great variability. The number of the animal for group did not affect the variability of data when the Mlog and CV were used.
Resumo:
PURPOSE: Enteral alimentation is the preferred modality of support in critical patients who have acceptable digestive function and are unable to eat orally, but the advantages of continuous versus intermittent administration are surrounded by controversy. With the purpose of identifying the benefits and complications of each technique, a prospective controlled study with matched subjects was conducted. PATIENTS AND METHODS: Twenty-eight consecutive candidates for enteral feeding were divided into 2 groups (n = 14 each) that were matched for diagnosis and APACHE II score. A commercial immune-stimulating polymeric diet was administered via nasogastric tube by electronic pump in the proportion of 25 kcal/kg/day, either as a 1-hour bolus every 3 hours (Group I), or continuously for 24 hours (Group II), over a 3-day period. Anthropometrics, biochemical measurements, recording of administered drugs and other therapies, thorax X-ray, measurement of abdominal circumference, monitoring of gastric residue, and clinical and nutritional assessments were performed at least once daily. The principal measured outcomes of this protocol were frequency of abdominal distention and pulmonary aspiration, and efficacy in supplying the desired amount of nutrients. RESULTS: Nearly half of the total population (46.4%) exhibited high gastric residues on at least 1 occasion, but only 1 confirmed episode of pulmonary aspiration occurred (3.6%). Both groups displayed a moderate number of complications, without differences. Food input during the first day was greater in Group II (approximately 20% difference), but by the third day, both groups displayed similarly small deficits in total furnished volume of about 10%, when compared with the prescribed diet. CONCLUSIONS: Both administration modalities permitted practical and effective administration of the diet with frequent registered abnormalities but few clinically significant problems. The two groups were similar in this regard, without statistical differences, probably because of meticulous technique, careful monitoring, strict patient matching, and conservative amounts of diet employed in both situations. Further studies with additional populations, diagnostic groups, and dietetic prescriptions should be performed in order to elucidate the differences between these commonly used feeding modalities.
Resumo:
Liver transplantation is now the standard treatment for end-stage liver disease. Given the shortage of liver donors and the progressively higher number of patients waiting for transplantation, improvements in patient selection and optimization of timing for transplantation are needed. Several solutions have been suggested, including increasing the donor pool; a fair policy for allocation, not permitting variables such as age, gender, and race, or third-party payer status to play any role; and knowledge of the natural history of each liver disease for which transplantation is offered. To observe ethical rules and distributive justice (guarantee to every citizen the same opportunity to get an organ), the "sickest first" policy must be used. Studies have demonstrated that death has no relationship with waiting time, but rather with the severity of liver disease at the time of inclusion. Thus, waiting time is no longer part of the United Network for Organ Sharing distribution criteria. Waiting time only differentiates between equally severely diseased patients. The authors have analyzed the waiting list mortality and 1-year survival for patients of the State of São Paulo, from July 1997 through January 2001. Only the chronological criterion was used. According to "Secretaria de Estado da Saúde de São Paulo" data, among all waiting list deaths, 82.2% occurred within the first year, and 37.6% within the first 3 months following inclusion. The allocation of livers based on waiting time is neither fair nor ethical, impairs distributive justice and human rights, and does not occur in any other part of the world.
Resumo:
Schizophrenic patients undergoing proton magnetic resonance spectroscopy show alterations in N-acetyl aspartate levels in several brain regions, indicating neuronal dysfunction. The present review focuses on the main proton magnetic resonance spectroscopy studies in the frontal lobe of schizophrenics. A MEDLINE search, from 1991 to March 2004, was carried out using the key-words spectroscopy and schizophrenia and proton and frontal. In addition, articles cited in the reference list of the studies obtained through MEDLINE were included. As a result, 27 articles were selected. The results were inconsistent, 19 papers reporting changes in the N-acetyl aspartate levels, while 8 reported no change. Methodological analysis led to the conclusion that the discrepancy may be due the following factors: (i) number of participants; (ii) variation in the clinical and demographic characteristics of the groups; (iii) little standardization of the acquisition parameters of spectroscopy. Overall, studies that fulfill strict methodological criteria show N-acetyl aspartate decrease in the frontal lobe of male schizophrenics.