42 resultados para Catalytic degradation
em Scielo Saúde Pública - SP
Resumo:
Optical and electron microscopical evidences of focal matrix degradation were frequently seen in liver sections taken from patients with periportal ("pipe-stem") fibrosis caused by schistosomiasis mansoni. Besides present of focal areas of rarefaction, fragmentation and dispersion of collagen fibers, the enlargend portal spaces also showed hyperplasia of elastic tisue and disarray of smooth muscle fibers following the destrution of portal vein branches. Ultrastructural cahnges represented by focal lytic and/or electron dense alterations of colagen fibrils were similar to those first seen in experimental material and designated as "chronic collagen degradation". Elastin and related microfibrils were also affected by focal condensation, fragmentation, distorsion and dissolution. Schistosome eggs were scanty in the tissue sections examined. Matrix degradation represented involuting changes related to the progressive diminution of parasite aggression, which occurs spontaneously with age or after cure by chemotherapy. Changes of focal matrix degradation now being described represent the basic morphological counterpart of periportal fibrosis involution documented clinically, especially by ultrasonography, in patients with hepatosplenic schistosomiasis submitted to curative chemotherapy.
Resumo:
Enhanced degradation of the fungicide metalaxyl was investigated in two soils: a gley humic (GH) and a Dark Red Latosol (LE), collected at sites never exposed to the fungicide. The soil samples were treated with successive applications of metalaxyl as a commercial formulation and 14C-metalaxyl in laboratory. Metalaxyl biodegradation was analyzed during 63 days by means of radiometric techniques to verify biomineralization and degradation product formation from the applied 14C-metalaxyl. Although biomineralization (maximum of 14 and 8% in the GH and LE soils, respectively), and partial degradation (about 32 and 48%, respectively) were detected in both soils, enhanced degradation was verified only in the GH soil. Results proved that metalaxyl behaves differently in soils.
Molecular analysis of the bacterial diversity in a specialized consortium for diesel oil degradation
Resumo:
Diesel oil is a compound derived from petroleum, consisting primarily of hydrocarbons. Poor conditions in transportation and storage of this product can contribute significantly to accidental spills causing serious ecological problems in soil and water and affecting the diversity of the microbial environment. The cloning and sequencing of the 16S rRNA gene is one of the molecular techniques that allows estimation and comparison of the microbial diversity in different environmental samples. The aim of this work was to estimate the diversity of microorganisms from the Bacteria domain in a consortium specialized in diesel oil degradation through partial sequencing of the 16S rRNA gene. After the extraction of DNA metagenomics, the material was amplified by PCR reaction using specific oligonucleotide primers for the 16S rRNA gene. The PCR products were cloned into a pGEM-T-Easy vector (Promega), and Escherichia coli was used as the host cell for recombinant DNAs. The partial clone sequencing was obtained using universal oligonucleotide primers from the vector. The genetic library obtained generated 431 clones. All the sequenced clones presented similarity to phylum Proteobacteria, with Gammaproteobacteria the most present group (49.8 % of the clones), followed by Alphaproteobacteira (44.8 %) and Betaproteobacteria (5.4 %). The Pseudomonas genus was the most abundant in the metagenomic library, followed by the Parvibaculum and the Sphingobium genus, respectively. After partial sequencing of the 16S rRNA, the diversity of the bacterial consortium was estimated using DOTUR software. When comparing these sequences to the database from the National Center for Biotechnology Information (NCBI), a strong correlation was found between the data generated by the software used and the data deposited in NCBI.
Resumo:
Soils are the foundation of terrestrial ecosystems and their role in food production is fundamental, although physical degradation has been observed in recent years, caused by different cultural practices that modify structures and consequently the functioning of soils. The objective of this study was to evaluate possible structural changes and degradation in an Oxisol under different managements for 20 years: no-tillage cultivation with and without crop rotation, perennial crop and conventional tillage, plus a forested area (reference). Initially, the crop profile was described and subsequently, 10 samples per management system and forest soil were collected to quantify soil organic matter, flocculation degree, bulk density, and macroporosity. The results indicated structural changes down to a soil depth of 50 cm, with predominance of structural units ∆μ (intermediate compaction level) under perennial crop and no-tillage crop rotation, and of structural units ∆ (compacted) under conventional tillage and no-tillage. The soil was increasingly degraded in the increasing order: forest => no-tillage crop rotation => perennial crop => no-tillage without crop rotation => conventional tillage. In all managements, the values of organic matter and macroporosity were always below and bulk density always above those of the reference area (forest) and, under no-tillage crop rotation and perennial crop, the flocculation degree was proportionally equal to that of the reference area.
Resumo:
This work investigated the effect of repeated applications on enhanced degradation of metalaxyl in two different agricultural soils used for cultivation of orange and lemon from Casa Branca and Itapetininga districts of São Paulo State, Brazil. Soil samples were collected from areas repeatedly treated with commercial ridomil 50GR for six successive years, and from other areas never exposed to this fungicide. At the laboratory, soil samples received a 14C-metalaxyl solution and its degradation was studied through radiometric techniques to measure biomineralization and recovery of extractable- and soil-bound products. Enhanced degradation was verified only in one soil, although partial degradation and mineralization of the fungicide were detected in both soils. The different rates and patterns of metalaxyl degradation in the soils were probably due to their different physical, chemical, and biological characteristics.
Resumo:
The objective of this work was to evaluate the catabolic gene diversity for the bacterial degradation of aromatic hydrocarbons in anthropogenic dark earth of Amazonia (ADE) and their biochar (BC). Functional diversity analyses in ADE soils can provide information on how adaptive microorganisms may influence the fertility of soils and what is their involvement in biogeochemical cycles. For this, clone libraries containing the gene encoding for the alpha subunit of aromatic ring-hydroxylating dioxygenases (α-ARHD bacterial gene) were constructed, totaling 800 clones. These libraries were prepared from samples of an ADE soil under two different land uses, located at the Caldeirão Experimental Station - secondary forest (SF) and agriculture (AG) -, and the biochar (SF_BC and AG_BC, respectively). Heterogeneity estimates indicated greater diversity in BC libraries; and Venn diagrams showed more unique operational protein clusters (OPC) in the SF_BC library than the ADE soil, which indicates that specific metabolic processes may occur in biochar. Phylogenetic analysis showed unidentified dioxygenases in ADE soils. Libraries containing functional gene encoding for the alpha subunit of the aromatic ring-hydroxylating dioxygenases (ARHD) gene from biochar show higher diversity indices than those of ADE under secondary forest and agriculture.
Resumo:
Glasses with low silica content are very susceptible to suffer pronounced degradation when exposed to room atmosphere during short times. In this work the results of the degradation of the surface of a metasilicate glass with composition 2Na2O.1CaO.3SiO2 are presented. Optical and scanning electron microscopy observations, X-ray diffraction, infrared and Raman microprobe spectroscopic measurements of the modified surface of this glass show strong evidences that it is formed essentially by a crystalline carbonate layer.
Resumo:
Phenols are widely used in many areas and commonly found as industrial by-products. A great number of agricultural and industrial activities realise phenolic compounds in the environmental. Waste phenols are produced mainly by the wood-pulp industry and during production of synthetic polymers, drugs, plastics, dyes, pesticides and others. Phenols are also released into the environmental by the degradation of pesticides with phenolic skeleton. The phenols level control is very important for the environmental protection. Amperometric biosensor has shown the feasibility to complement laboratory-based analytical methods for the determination of phenolic compounds, providing alternatives to conventional methods which have many disadvantages. This brief review considers the evolution of an approach to amperometric measurement using the catalytic properties of some enzymes for phenolic compounds monitoring.
Resumo:
Cyclic voltammetry was used to study 3,4-dihydroxybenzaldehyde (3,4-DHB) electropolymerization processes on carbon paste electrodes. The characteristics of the electropolymerized films were highly dependent on pH, anodic switching potential, scan rate, 3,4-DHB concentrations and number of cycles. Film stability was determined in citrate/phosphate buffer solutions at the same pH used during the electropolymerization process. The best conditions to prepare carbon paste modified electrodes were pH 7.8; 0.0 <= Eapl <= 0.25 V; 10 mV s-1; 0.25 mmol L-1 3,4-DHB and 10 scans. These carbon paste modified electrodes were used for NADH catalytic detection at 0.23 V in the range 0.015 <= [NADH] <= 0.21 mmol L-1. Experimental data were used to propose a mechanism for the 3,4--DHB electropolymerization processes, which involves initial phenoxyl radical formation.
Resumo:
This paper discusses the results obtained with homogeneous catalytic ozonation [Mn (II) and Cu (II)] in phenol degradation. The reduction of total phenols and total organic carbon (TOC) and the ozone consumption were evaluated. The efficiency in phenol degradation (total phenol removal) at pH 3, with the catalytic process (Mn (II)), increased from 37% to 55% while the TOC removal increased from 4 to 63% in a seven-minute treatment. The ozonation process efficiency at pH 10 was 43% and 39% for phenol and TOC removal, respectively. The presence of both metallic ions (Mn2+ and Cu+2) in the ozonation process resulted in a positive effect.
Resumo:
Cutinases (EC 3.1.1.74) are also known as cutin hidrolases. These enzymes share catalytic properties of lipases and esterases, presenting a unique feature of being active regardless the presence of an oil-water interface, making them interesting as biocatalysts in several industrial processes involving hydrolysis, esterification and trans-esterification reactions. They are also active in different reaction media, allowing their applications in different areas such as food industry, cosmetics, fine chemicals, pesticide and insecticide degradation, treatment and laundry of fiber textiles and polymer chemistry. The present review describes the characteristics, potential applications and new perspectives for these enzymes.
Resumo:
Bisphenol A (BPA) is a monomer used in epoxy resin and polycarbonate manufacture. This molecule is considered as an endocrine disruptor that causes different diseases. The human exposition to this non biodegrable substance is increasing in the time; in particular, water is contaminated by industrial remainder flow. In this article heterogeneous photo degradation of a solution of BPA in water solution using a catalytic photo reactor with UV light and titanium dioxide (TiO2) was evaluated. High performance liquid chromatography (HPLC) was used to analyze the photo degradation of BPA solutions. The influence of titanium dioxide amount, BPA concentration, reaction temperature and the catalyst state like suspension and immobilized were also determinated. The highest elimination of BPA was 83.2%, in 240 min, beginning with 0.05 mM of BPA and 100 mg/L of TiO2 in suspension.
Resumo:
The catalytic performance of Mg,Al-mixed oxides (MO20, MO25 and MO33) derived from hydrotalcites was evaluated in the Knoevenagel reaction between benzaldehyde and phenylsulfonylacetonitrile at 373 and 383 K. The best results were obtained for the sample MO20 that presented the highest basic sites density and external area and the smallest crystallite sizes. The relative amount of basic sites with weak to intermediate strength also played an important role on catalytic performance. By increasing the catalyst content from 1 to 5 wt.% at 383 K, a complete conversion of the reactants is attained, producing α-phenylsulfonylcinnamonitrile with a selectivity of 100%.
Resumo:
The electrochemical performance of electrodeposited Ti/β-PbO2 and Ti-Pt/β-PbO2 anodes was galvanostatically evaluated (batch mode, 50 mA cm-2) to degrade the Direct Yellow 86 dye (100 or 200 mg L-1 in 0.1 mol L-1 Na2SO4 + 1.5 g L-1 NaCl), investigating the effect of pH and temperature. Similar results were obtained for both electrodes and the best conditions for removal of color and chemical oxygen demand are pH 7 and 40 °C, when 90% decolorization is attained by passing a charge of only ~0.13 A h L-1 and total mineralization is achieved with expenditure of ~5 kW h m-3.