14 resultados para CORD INJURED PATIENTS
em Scielo Saúde Pública - SP
Resumo:
Damage control surgery is one of the major advances in surgical practice in the last 20 years. The indications for damage control surgery are: the need to terminate a laparotomy rapidly in an exsanguinating, hypothermic patient who had developed a coagulopathy and who is about to die on the operating table; inability to control bleeding by direct hemostasis; and inability to close the abdomen without tension because of massive visceral edema and a tense abdominal wall. Damage control surgery has three phases: 1) laparotomy to control hemorrhage by packing, shunting, or balloon tamponade, or both; control of intestinal spillage by resection or ligation of damaged bowel, or both; 2) physiological resuscitation to correct hypothermia, metabolic acidosis, and coagulopathy. 3) planned reoperation for definitive repair. Damage control surgery is appropriate in a small number of critically ill patients who are likely to require substantial hospital resources. However, there are many questions that need to be answered. Who is the patient elected for this surgery? When is the ideal time to make the decision? Which are the parameters that indicate to the surgeons the moment to re-operate the patient? How to treat the long-term complications? In the present review we described some historical aspects, indications, technical aspects, advantages and disadvantages of this procedure, as well as its physiological consequences and morbidity and mortality rates of damage control surgery. Damage control surgery offers a simple effective alternative to the traditional surgical management of complex or multiple injuries in critically injured patients.
Resumo:
The purpose of this study was to investigate the effect of the level of injury on the serum level of norepinephrine (Nor) and epinephrine (Epi) at rest and after maximal exercise in individuals with paraplegia. Twenty-six male spinal cord-injured subjects with complete paraplegia for at least 9 months were divided into two groups of 13 subjects each according to the level of injury, i.e., T1-T6 and T7-T12. Serum Nor and Epi concentrations were measured by HPLC-ECD, at rest (PRE) and immediately after a maximal ergospirometric test (POST). Statistical analysis was performed using parametric and non-parametric tests. Maximal heart rate, peak oxygen uptake, and PRE and POST Nor were lower in the T1-T6 than in the T7-T12 group (166 ± 28 vs 188 ± 10 bpm; 18.0 ± 6.0 vs 25.8 ± 4.1 ml kg-1 min-1; 0.54 ± 0.26 vs 0.99 ± 0.47 nM; 1.48 ± 1.65 vs 3.07 ± 1.44 nM). Both groups presented a significant increase in Nor level after exercise, while only the T7-T12 group showed a significant increase in Epi after exercise (T1-T6: 0.98 ± 0.72 vs 1.11 ± 1.19 nM; T7-T12: 1.24 ± 1.02 vs 1.89 ± 1.57 nM). These data show that individuals with paraplegia above T6 have an attentuated catecholamine release at rest and response to exercise as compared to subjects with injuries below T6, which might prevent a better exercise performance in the former group.
Resumo:
INTRODUCTION: Traumatic spinal cord injury is one of the most disabling conditions occurring in man and thus stimulates a strong interest in its histopathological, biochemical, and functional changes, primarily as we search for preventive and therapeutic methods. PURPOSE: To develop an experimental model for transplantation of cells from the fetal rat central nervous system to the site of an injured spinal cord of an adult rat in which the transplanted cells survive and become integrated. This experimental model will facilitate investigations of factors that promote regeneration and functional recovery after spinal cord trauma. MATERIAL AND METHODS: Fifteen adult Wistar rats underwent laminectomy, and an spinal cord lesion was made with microdissection. Fetal spinal cord tissue was then transplanted to the site of the injury. The rats were monitored over a 48-hour period, and then their vertebral column was completely removed for histological analysis. RESULTS: In 60% of transplanted rats, the fetal tissue at the injured site remained viable in the site of the lesion.
Resumo:
Treatments for patients with hematologic malignancies not in remission are limited, but a few clinical studies have investigated the effects of salvaged unrelated cord blood transplantation (CBT). We retrospectively studied 19 patients with acute leukemia, 5 with myelodysplastic syndrome (MDS with refractory anemia with excess blasts [RAEB]), and 2 with non-Hodgkin's lymphoma who received 1 CBT unit ≤2 loci human leukocyte antigen (HLA)-mismatched after undergoing myeloablative conditioning regimens between July 2005 and July 2014. All of them were in non-remission before transplantation. The infused total nucleated cell (TNC) dose was 4.07 (range 2.76-6.02)×107/kg and that of CD34+ stem cells was 2.08 (range 0.99-8.65)×105/kg. All patients were engrafted with neutrophils that exceeded 0.5×109/L on median day +17 (range 14-37 days) and had platelet counts of >20×109/L on median day +35 (range 17-70 days). Sixteen patients (61.5%) experienced pre-engraftment syndrome (PES), and six (23.1%) patients progressed to acute graft-versus-host disease (GVHD). The cumulative incidence rates of II-IV acute GVHD and chronic GVHD were 50% and 26.9%, respectively. After a median follow-up of 27 months (range 5-74), 14 patients survived and 3 relapsed. The estimated 2-year overall survival (OS), disease-free survival (DFS), and non-relapse mortality (NRM) rates were 50.5%, 40.3%, and 35.2%, respectively. Salvaged CBT might be a promising modality for treating hematologic malignancies, even in patients with a high leukemia burden.
Resumo:
We investigated the diagnostic value of the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) of magnetic resonance diffusion tensor imaging (DTI) in patients with spinal cord compression (SCC) using a meta-analysis framework. Multiple scientific literature databases were exhaustively searched to identify articles relevant to this study. Mean values and standardized mean differences (SMDs) were calculated for the ADC and FA in normal and diseased tissues. The STATA version 12.0 software was used for statistical analysis. Of the 41 articles initially retrieved through database searches, 11 case-control studies were eligible for the meta-analysis and contained a combined total of 645 human subjects (394 patients with SCC and 251 healthy controls). All 11 studies reported data on FA, and 9 contained data related to the ADC. The combined SMDs of the ADC and FA showed that the ADC was significantly higher and the FA was lower in patients with SCC than in healthy controls. Subgroup analysis based on the b value showed higher ADCs in patients with SCC than in healthy controls at b values of both ≤500 and >500 s/mm2. In summary, the main findings of this meta-analysis revealed an increased ADC and decreased FA in patients with SCC, indicating that DTI is an important diagnostic imaging tool to assess patients suspected to have SCC.
Resumo:
OBJECTIVE To translate and culturally adapt to Portuguese the Ferrans and Powers Quality of Life Index Spinal Cord Injury - Version III and characterize the sample in relation to sociodemographic and clinical aspects. METHOD A methodological study with view to cross-cultural adaptation, following the particular steps of this method: initial translation, translation synthesis, back-translation (translation back to the original language), review by a committee of judges and pretest of the final version. The pretest was carried out with 30 patients with spinal cord injury. RESULTS An index of 74 items divided into two parts (satisfaction/importance) was obtained. The criteria of semantic equivalence were evaluated as very adequate translation, higher than 87%, and vocabulary and were grammar higher than 86%. Idiomatic equivalence was higher than 74%, experimental greater than 78% and conceptual was greater than 70%. CONCLUSION After cross-cultural adaptation, the instrument proved semantic, idiomatic, experimental and conceptual adequacy, in addition to helping the evaluation of the quality of life of people with spinal cord injury.
Resumo:
ABSTRACTObjective:to assess the impact of the shift inlet trauma patients, who underwent surgery, in-hospital mortality.Methods:a retrospective observational cohort study from November 2011 to March 2012, with data collected through electronic medical records. The following variables were statistically analyzed: age, gender, city of origin, marital status, admission to the risk classification (based on the Manchester Protocol), degree of contamination, time / admission round, admission day and hospital outcome.Results:during the study period, 563 patients injured victims underwent surgery, with a mean age of 35.5 years (± 20.7), 422 (75%) were male, with 276 (49.9%) received in the night shift and 205 (36.4%) on weekends. Patients admitted at night and on weekends had higher mortality [19 (6.9%) vs. 6 (2.2%), p=0.014, and 11 (5.4%) vs. 14 (3.9%), p=0.014, respectively]. In the multivariate analysis, independent predictors of mortality were the night admission (OR 3.15), the red risk classification (OR 4.87), and age (OR 1.17).Conclusion:the admission of night shift and weekend patients was associated with more severe and presented higher mortality rate. Admission to the night shift was an independent factor of surgical mortality in trauma patients, along with the red risk classification and age.
Resumo:
Pemphigus foliaceus (PF) is an autoimmune bullous disease endemic in Brazil. Since serum IL-12 is increased in patients with PF and Langerhans cells (LC) produce IL-12, we titrated serum autoantibodies by indirect immunofluorescence, and quantified epidermal dendritic cells, known as LC, and dermal dendritic cells (DC). Biopsies of blistering lesions were obtained from 22 patients, 13 of whom were submitted to biopsy of both injured and of apparently healthy skin. The control groups consisted of skin from 8 cadavers and from 12 women submitted to breast plastic surgery. LC and DC were identified with anti-CD1a antibody and quantified by morphometric analysis. LC number in the lesion and in apparently healthy skin from PF patients was similar to that of both control groups. DC number in the injured skin (median = 0.94 DC/mm basement membrane) was higher than that of the cadaver group (median = 0.13 DC/mm basement membrane). In the 13 patients with biopsies of both injured and apparently healthy skin, LC and DC were present in larger numbers in the lesion. There was a direct correlation between DC number in the lesion of the PF group and serum autoantibody titers. This correlation was not observed for LC number. The increased number of DC in the lesion, as well as its direct correlation with serum autoantibody titers suggest the participation of DC in the pathogenesis of PF. The relationship between increased DC number and IL-12 in PF needs to be clarified.
Resumo:
The complex nature of spinal cord injury appears to demand a multifactorial repair strategy. One of the components that will likely be included is an implant that will fill the area of lost nervous tissue and provide a growth substrate for injured axons. Here we will discuss the role of Schwann cells (SCs) in cell-based, surgical repair strategies of the injured adult spinal cord. We will review key studies that showed that intraspinal SC grafts limit injury-induced tissue loss and promote axonal regeneration and myelination, and that this response can be improved by adding neurotrophic factors or anti-inflammatory agents. These results will be compared with several other approaches to the repair of the spinal cord. A general concern with repair strategies is the limited functional recovery, which is in large part due to the failure of axons to grow across the scar tissue at the distal graft-spinal cord interface. Consequently, new synaptic connections with spinal neurons involved in motor function are not formed. We will highlight repair approaches that did result in growth across the scar and discuss the necessity for more studies involving larger, clinically relevant types of injuries, addressing this specific issue. Finally, this review will reflect on the prospect of SCs for repair strategies in the clinic.
Resumo:
Amyotrophic lateral sclerosis (ALS), a neurodegenerative disease of unknown etiology, affects motor neurons leading to atrophy of skeletal muscles, paralysis and death. There is evidence for the accumulation of neurofilaments (NF) in motor neurons of the spinal cord in ALS cases. NF are major structural elements of the neuronal cytoskeleton. They play an important role in cell architecture and differentiation and in the determination and maintenance of fiber caliber. They are composed of three different polypeptides: light (NF-L), medium (NF-M) and heavy (NF-H) subunits. In the present study, we performed a morphological and quantitative immunohistochemical analysis to evaluate the accumulation of NF and the presence of each subunit in control and ALS cases. Spinal cords from patients without neurological disease and from ALS patients were obtained at autopsy. In all ALS cases there was a marked loss of motor neurons, besides atrophic neurons and preserved neurons with cytoplasmic inclusions, and extensive gliosis. In control cases, the immunoreaction in the cytoplasm of neurons was weak for phosphorylated NF-H, strong for NF-M and weak for NF-L. In ALS cases, anterior horn neurons showed intense immunoreactivity in focal regions of neuronal perikarya for all subunits, although the difference in the integrated optical density was statistically significant only for NF-H. Furthermore, we also observed dilated axons (spheroids), which were immunopositive for NF-H but negative for NF-M and NF-L. In conclusion, we present qualitative and quantitative evidence of NF-H subunit accumulation in neuronal perikarya and spheroids, which suggests a possible role of this subunit in the pathogenesis of ALS.
Resumo:
We transplanted 47 patients with Fanconi anemia using an alternative source of hematopoietic cells. The patients were assigned to the following groups: group 1, unrelated bone marrow (N = 15); group 2, unrelated cord blood (N = 17), and group 3, related non-sibling bone marrow (N = 15). Twenty-four patients (51%) had complete engraftment, which was not influenced by gender (P = 0.87), age (P = 0.45), dose of cyclophosphamide (P = 0.80), nucleated cell dose infused (P = 0.60), or use of anti-T serotherapy (P = 0.20). Favorable factors for superior engraftment were full HLA compatibility (independent of the source of cells; P = 0.007) and use of a fludarabine-based conditioning regimen (P = 0.046). Unfavorable factors were > or = 25 transfusions pre-transplant (P = 0.011) and degree of HLA disparity (P = 0.007). Intensity of mucositis (P = 0.50) and use of androgen prior to transplant had no influence on survival (P = 0.80). Acute graft-versus-host disease (GVHD) grade II-IV and chronic GVHD were diagnosed in 47 and 23% of available patients, respectively, and infections prevailed as the main cause of death, associated or not with GVHD. Eighteen patients are alive, the Kaplan-Meyer overall survival is 38% at ~8 years, and the best results were obtained with related non-sibling bone marrow patients. Three recommendations emerged from the present study: fludarabine as part of conditioning, transplant in patients with <25 transfusions and avoidance of HLA disparity. In addition, an extended family search (even when consanguinity is not present) seeking for a related non-sibling donor is highly recommended.
Resumo:
Therapy with bone marrow-derived cells has been used in ischemic patients with reported success. The aim of this study was to determine the therapeutic efficacy of fresh and frozen human umbilical cord blood cells (hUCB) in Wistar rats submitted to permanent occlusion of the left coronary artery. Three hours after myocardial infarction, 2 x 10(7) hUCB cells or vehicle were administered by intramyocardial injection. The animals were divided into five groups: control (N = 10), sham operated (N = 10), infarcted that received vehicle (N = 9), infarcted treated with cryopreserved hUCB (N = 7), and infarcted treated with fresh hUCB (N = 5). Cardiac function was evaluated by electrocardiogram (ECG) and echocardiogram (ECHO) before cell therapy, and by ECG, ECHO, cardiopulmonary test, and left ventricular pressure measurements 3 weeks later. After 3 weeks, both groups treated with hUCB still had Q wave present in L1, âQRS >90° and reduced shortening fraction (less than 50%). In addition, cardiac indexes of left ventricular contractility and relaxation were 5484 ± 875 and -4032 ± 643 mmHg (cryopreserved hUCB) and 4585 ± 955 and -2862 ± 590 mmHg (fresh hUCB), respectively. These values were not statistically different from those of saline-treated animals. Cardiopulmonary exercise test profile was typical of infarcted hearts; exercise time was about 14 min and maximal VO2 was 24.77 ± 5.00 mL·kg-1·min-1. These data show that hUCB therapy did not improve the cardiac function of infarcted animals or prevent cardiac remodeling.
Resumo:
Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old) were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a) 1 h after surgery, into the injury site at a concentration of 5 x 10(6) cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group); b) into the cisterna magna, 9 days after lesion at a concentration of 5 x 10(6) cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group). The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day). The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05). The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation.
Resumo:
Spinal cord injury is an extremely severe condition with no available effective therapies. We examined the effect of melatonin on traumatic compression of the spinal cord. Sixty male adult Wistar rats were divided into three groups: sham-operated animals and animals with 35 and 50% spinal cord compression with a polycarbonate rod spacer. Each group was divided into two subgroups, each receiving an injection of vehicle or melatonin (2.5 mg/kg, intraperitoneal) 5 min prior to and 1, 2, 3, and 4 h after injury. Functional recovery was monitored weekly by the open-field test, the Basso, Beattie and Bresnahan locomotor scale and the inclined plane test. Histological changes of the spinal cord were examined 35 days after injury. Motor scores were progressively lower as spacer size increased according to the motor scale and inclined plane test evaluation at all times of assessment. The results of the two tests were correlated. The open-field test presented similar results with a less pronounced difference between the 35 and 50% compression groups. The injured groups presented functional recovery that was more evident in the first and second weeks. Animals receiving melatonin treatment presented more pronounced functional recovery than vehicle-treated animals as measured by the motor scale or inclined plane. NADPH-d histochemistry revealed integrity of the spinal cord thoracic segment in sham-operated animals and confirmed the severity of the lesion after spinal cord narrowing. The results obtained after experimental compression of the spinal cord support the hypothesis that melatonin may be considered for use in clinical practice because of its protective effect on the secondary wave of neuronal death following the primary wave after spinal cord injury.