12 resultados para Bulk segregant analysis
em Scielo Saúde Pública - SP
Resumo:
The gene Pi-ar confers resistance to Pyricularia grisea race IB-45 in a somaclone derived from immature panicles of the susceptible rice (Oryza sativa) cultivar Araguaia. RAPD technique was used to identify molecular markers linked to this gene utilizing bulked segregant analysis. Initially, the two parental DNAs from the resistant donor SC09 and 'Araguaia' were analyzed using random primers. Of the 240 primers tested, 203 produced amplification products. The two parental DNAs along with the resistant and susceptible bulks of F2 population were screened using 48 primers that differentiated resistant and susceptible parents. Even though eight primers differentiated the resistant bulk from the susceptible bulk, as well as somaclone SC09 and 'Araguaia', only one primer, OPC02 ('GTGAGGCGTC'), was found to be tightly linked (1.7cM) to the resistance gene of somaclone SC09.
Resumo:
The objective of this study was to identify restriction fragment length polymorphism (RFLP) markers linked to QTLs that control aluminum (Al) tolerance in maize. The strategy used was bulked segregant analysis (BSA) and the genetic material utilized was an F2 population derived from a cross between the Al-susceptible inbred line L53 and Al-tolerant inbred line L1327. Both lines were developed at the National Maize and Sorghum Research Center - CNPMS/EMBRAPA. The F2 population of 1554 individuals was evaluated in a nutrient solution containing a toxic concentration of Al and relative seminal root length (RSRL) was used as a phenotypic measure of tolerance. The RSRL frequency distribution was continuous, but skewed towards Al-susceptible individuals. Seedlings of the F2 population which scored the highest and the lowest RSRL values were transplanted to the field and subsequently selfed to obtain F3 families. Thirty F3 families (15 Al-susceptible and 15 Al-tolerant) were evaluated in nutrient solution, using an incomplete block design, to identify those with the smallest variances for aluminum tolerance and susceptibility. Six Al-susceptible and five Al-tolerant F3 families were chosen to construct one pool of Al-susceptible individuals, and another of Al-tolerant, herein referred as "bulks", based on average values of RSRL and genetic variance. One hundred and thirteen probes were selected, with an average interval of 30 cM, covering the 10 maize chromosomes. These were tested for their ability to discriminate the parental lines. Fifty-four of these probes were polymorphic, with 46 showing codominance. These probes were hybridized with DNA from the two contrasting bulks. Three RFLPs on chromosome 8 distinguished the bulks on the basis of band intensity. DNA of individuals from the bulks was hybridized with these probes and showed the presence of heterozygous individuals in each bulk. These results suggest that in maize there is a region related to aluminum tolerance on chromosome 8
Resumo:
Devido a grande importância da cultura de Eucalyptus no Brasil, empresas do setor florestal têm buscado através de programas de melhoramento genético, reduzir as perdas de produção e atender a demanda do mercado de papel e celulose. Um exemplo, é a busca por genes de resistência a doenças, principalmente a ferrugem causada por Puccinia psidii Winter, que resulta em redução da produtividade em plantas altamente suscetíveis. No presente trabalho, mudas de Eucalyptus pertencentes a uma geração F1, provenientes do cruzamento controlado entre parentais híbridos E. grandis X E. urophylla, sendo eles resistente e suscetível, foram inoculadas com Puccinia psidii em casa de vegetação e acompanhadas até o aparecimento dos sintomas da ferrugem. Foram classificadas, em dois grupos: resistentes (ausência de sintomas) e suscetíveis (presença de sintomas e esporulação). As amostras de DNA foram comparadas com o uso de marcadores moleculares associado ao método de BSA (Bulked Segregant Analysis). O polimorfismo entre os grupos foi geneticamente relacionado ao loco que determina a característica de resistência ou sucetibilidade. Dentre os 720 "primers" testados, 19 foram polimórficos, porém, apenas o marcador AK 01 manteve-se presente, quando testado em todos os indivíduos da população, mostrando-se a uma distância genética estimada de 20 cM em repulsão ao gene de resistência.
Resumo:
Three simple, sensitive, economical and reproducible spectrophotometric methods (A, B and C) are described for determination of mesalamine in pure drug as well as in tablet dosage forms. Method A is based on the reduction of tungstate and/or molybdate in Folin Ciocalteu's reagent; method B describes the reaction between the diazotized drug and α-naphthol and method C is based on the reaction of the drug with vanillin, in acidic medium. Under optimum conditions, mesalamine could be quantified in the concentration ranges, 1-30, 1-15 and 2-30 µg mL-1 by method A, B and C, respectively. All the methods have been applied to the determination of mesalamine in tablet dosage forms. Results of analysis are validated statistically.
Resumo:
The spatial variability of strongly weathered soils under sugarcane and soybean/wheat rotation was quantitatively assessed on 33 fields in two regions in São Paulo State, Brazil: Araras (15 fields with sugarcane) and Assis (11 fields with sugarcane and seven fields with soybean/wheat rotation). Statistical methods used were: nested analysis of variance (for 11 fields), semivariance analysis and analysis of variance within and between fields. Spatial levels from 50 m to several km were analyzed. Results are discussed with reference to a previously published study carried out in the surroundings of Passo Fundo (RS). Similar variability patterns were found for clay content, organic C content and cation exchange capacity. The fields studied are quite homogeneous with respect to these relatively stable soil characteristics. Spatial variability of other characteristics (resin extractable P, pH, base- and Al-saturation and also soil colour), varies with region and, or land use management. Soil management for sugarcane seems to have induced modifications to greater depths than for soybean/wheat rotation. Surface layers of soils under soybean/wheat present relatively little variation, apparently as a result of very intensive soil management. The major part of within-field variation occurs at short distances (< 50 m) in all study areas. Hence, little extra information would be gained by increasing sampling density from, say, 1/km² to 1/50 m². For many purposes, the soils in the study regions can be mapped with the same observation density, but residual variance will not be the same in all areas. Bulk sampling may help to reveal spatial patterns between 50 and 1.000 m.
Resumo:
The impact of charcoal production on soil hydraulic properties, runoff response and erosion susceptibility were studied in both field and simulation experiments. Core and composite samples, from 12 randomly selected sites within the catchment of Kotokosu were taken from the 0-10 cm layer of a charcoal site soil (CSS) and adjacent field soils (AFS). These samples were used to determine saturated hydraulic conductivity (Ksat), bulk density, total porosity, soil texture and color. Infiltration, surface albedo and soil surface temperature were also measured in both CSS and AFS. Measured properties were used as entries in a rainfall runoff simulation experiment on a smooth (5 % slope) plot of 25 x 25 m grids with 10 cm resolutions. Typical rainfall intensities of the study watershed (high, moderate and low) were applied to five different combinations of Ks distributions that could be expected in this landscape. The results showed significantly (p < 0.01) higher flow characteristics of the soil under charcoal kilns (increase of 88 %). Infiltration was enhanced and runoff volume reduced significantly. The results showed runoff reduction of about 37 and 18 %, and runoff coefficient ranging from 0.47-0.75 and 0.04-0.39 or simulation based on high (200 mm h-1) and moderate (100 mm h-1) rainfall events over the CSS and AFS areas, respectively. Other potential impacts of charcoal production on watershed hydrology were described. The results presented, together with watershed measurements, when available, are expected to enhance understanding of the hydrological responses of ecosystems to indiscriminate charcoal production and related activities in this region.
Resumo:
Irrigation with treated domestic sewage wastewater (TSE) is an agricultural practice to reduce water requirements of agroecossystems and the nutrient load impact on freshwaters, but adverse effects on soil chemical (salinization, sodification, etc.) and soil physical properties (alteration in soil porosity and hydraulic conductivity, etc.) have been reported. This study aimed to define some relationships among these changes in an Oxisol using multivariate analysis. Corn (Zea mays L.) and sunflower (Helianthus annuus L.) were grown for two years, irrigated with TSE. The following soil properties were determined: Ca2+; Mg2+; Na+; K+ and H + Al contents, cationic exchangeable capacity (CEC), sum of bases (SB), base saturation (V), texture (sand, silt and clay), macro-, micro-, and cryptoporosity (V MA, V MI and V CRI), water content at soil saturation (θS) and at field capacity (θFC), residual water content (θR), soil bulk density (d s), water dispersed clay (WDC) and saturated hydraulic conductivity (K SAT). Factor analysis revealed the following six principal factors: Fine Porosity (composed of Na+; K+; WDC, θR, θRFC, and V CRI); Large Porosity (θS, d s, V MA, Vs); Soil CEC (Ca2+; Mg2+; CEC, SB, V); Soil Acidity (H + Al); and Soil Texture (factors 5 and 6). A dual pore structure appears clearly to the factors 1 and 2, with an apparent relationship between fine porosity and the monovalent cations Na+ and K+. The irrigation (with potable sodic tap water or sewage wastewater) only had a significant effect on Fine Porosity and Large Porosity factors, while factors 3 and 4 (Soil CEC and Soil Acidity) were correlated with soil depth. The main conclusion was a shift in pore distribution (large to fine pores) during irrigation with TSE, which induces an increase of water storage and reduces the capacity of drainage of salts.
Resumo:
Humic substances are the major components of soil organic matter. Among the three humic substance components (humic acid, fulvic acid, and humin), humin is the most insoluble in aqueous solution at any pH value and, in turn, the least understood. Humin has poor solubility mainly because it is tightly bonded to inorganic soil colloids. By breaking the linkage between humin and inorganic soil colloids using inorganic or organic solvents, bulk humin can be partially soluble in alkali, enabling a better understanding of the structure and properties of humin. However, the structural relationship between bulk humin and its alkaline-soluble (AS) and alkaline-insoluble (AIS) fractions is still unknown. In this study, we isolated bulk humin from two soils of Northeast China by exhaustive extraction (25 to 28 times) with 0.1 mol L-1 NaOH + 0.1 mol L-1 Na4P2O7, followed by the traditional treatment with 10 % HF-HCl. The isolated bulk humin was then fractionated into AS-humin and AIS-humin by exhaustive extraction (12 to 15 times) with 0.1 mol L-1 NaOH. Elemental analysis and solid-state 13C cross-polarization magic angle spinning nuclear magnetic resonance (13C CPMAS NMR) spectroscopy were used to characterize and compare the chemical structures of bulk humin and its corresponding fractions. The results showed that, regardless of soil types, bulk humin was the most aliphatic and most hydrophobic, AS-humin was the least aliphatic, and AIS-humin was the least alkylated among the three humic components. The results showed that bulk humin and its corresponding AS-humin and AIS-humin fractions are structurally differed from one another, implying that the functions of these humic components in the soil environment differed.
Resumo:
Soil quality indicators such as penetration resistance (PR) and bulk density (BD) are traditionally determined in a single undisturbed soil sample. The aim of this study was to assess the effect of PR measurements of undisturbed samples on the determination of BD in the same sample of two soils differing in clay contents. To this end, samples were collected from the 0.00-0.10 and 0.10-0.20 m layers of two soils of clayey and very clayey texture. Volumetric rings were used to collect a total of 120 undisturbed soil samples from each soil layer that were divided into two subsets containing 60 units each. One sample set, designated “perforated samples”, was used to determine PR and BD in the same undisturbed sample; the other, named “intact samples”, was used to determine BD only. Bulk density values for perforated and intact samples were compared by analysis of variance, using a completely randomized experimental design. Means were compared by the t-test at 5 %. The BD values for the clayey soil were similar in perforated and intact samples from the two layers. However, BD of the very clayey soil was lower in the perforated than in the intact samples at both depths. Therefore, PR and BD in clayey soils can be accurately determined in the same undisturbed sample whereas in very clayey soils, different samples are required for this purpose.
Resumo:
Doripenem was characterized through physicochemical and spectroscopic techniques, as well as thermal analysis. TLC (Rf = 0.62) and HPLC (rt = 7.4 min) were found to be adequate to identify the drug. UV and infrared spectra showed similar profile between doripenem bulk and standard. The ¹H and 13C NMR analysis revealed chemical shifts that allowed identifying the drug. Thermal analysis demonstrated three steps with mass loss, at 128, 178 and 276 ºC. The work was successfully applied to qualitative analysis of doripenem, showing the reported methods can be used for physicochemical characterization of doripenem
Resumo:
A direct, extraction-free spectrophotometric method has been developed for the determination of acebutolol hydrochloride (ABH) in pharmaceutical preparations. The method is based on ion-pair complex formation between the drug and two acidic dyes (sulphonaphthalein) namely bromocresol green (BCG) and bromothymol blue (BTB). Conformity to Beer's law enabled the assay of the drug in the range of 0.5-13.8 µg mL-1 with BCG and 1.8-15.9 µg mL-1 with BTB. Compared with a reference method, the results obtained were of equal accuracy and precision. In addition, these methods were also found to be specific for the analysis of acebutolol hydrochloride in the presence of excipients, which are co-formulated in the drug.
Resumo:
A qualitative spot-test and tandem quantitative analysis of dipyrone in the bulk drug and in pharmaceutical preparations is proposed. The formation of a reddish-violet color indicates a positive result. In sequence a quantitative procedure can be performed in the same flask. The quantitative results obtained were statistically compared with those obtained with the method indicated by the Brazilian Pharmacopoeia, using the Student's t and the F tests. Considering the concentration in a 100 µL aliquot, the qualitative visual limit of detection is about 5×10-6 g; instrumental LOD ≅ 1.4×10-4 mol L-1 ; LOQ ≅ 4.5×10-4 mol L-1.