5 resultados para Beam Shaping
em Scielo Saúde Pública - SP
Resumo:
A recently developed technique, namely multiple beam interference microscopy, has been applied to investigate the morphology of the parasite Toxoplasma gondii for the first time. The interference pattern obtained from the multiple internal reflection of a T. gondii, sandwiched between a glass plate and a cover plate, was focused on the objective of a conventional microscope. Because of the enhance contrast, several details of sub cellular structure and separating compartments are clearly visible. Details reveal the presence of a nucleus, lipid body, dense granule, rhoptry and amylopectin. The wall thickness of the membrane of the lipid body and the amylopectin is of the order of 0.02 µm and can be clearly distinguished with the help of the present technique. The same parasite has also been examined with the help of atomic force microscopy, and because of its thick membrane, the inner structural details were not observed at all. Sub cellular details of T. gondii observed with the present technique have been reported earlier only by low amplification transmission electron microscopy and not by any optical microscopic technique.
Resumo:
Due to source contamination and wearing of instrument components problems caused by the direct insertion probe technique, a new way of introduction of low volatile compounds into mass spectrometer was tested. This new scheme comprises the introduction of the low volatile compounds solutions via a six port valve connected to a particle beam interface. Solutions of isatin were injected into this system and the best results were obtained with CH2Cl2, CH3OH and CH3CN. The solution inlet system has shown to be advantageous over the conventional way of direct insertion probe introduction.
Resumo:
This contribution discusses the nonlinear dynamics of a pin-ended elasto-plastic beam with both kinematic and isotropic hardening. An iterative numerical procedure based on the operator split technique is developed in order to deal with the nonlinearities in the equations of motion. Free and forced responses for harmonic sinusoidal and square wave excitations are investigated. Numerical simulations present many interesting behaviors such as jump phenomena, sensitivity to initial conditions, chaos and transient chaos. These results indicate that there are practical problems in predicting the response of the beam even when periodic steady state response is expected.
Resumo:
This paper applies the Multi-Harmonic Nonlinear Receptance Coupling Approach (MUHANORCA) (Ferreira 1998) to evaluate the frequency response characteristics of a beam which is clamped at one end and supported at the other end by a nonlinear cubic stiffness joint. In order to apply the substructure coupling technique, the problem was characterised by coupling a clamped linear beam with a nonlinear cubic stiffness joint. The experimental results were obtained by a sinusoidal excitation with a special force control algorithm where the level of the fundamental force is kept constant and the level of the harmonics is kept zero for all the frequencies measured.