257 resultados para Transmission property
Resumo:
The life cycle of ear mites of the genus Raillietia Trouessart consists of egg, larva, proto-and deutonymph and adult. The proto-and deutonymph are free living, non feeding instars. The teneral adult is the transfer stage. The minimum period required for completion of the life cycle is approximately eight days.
Resumo:
The Kilombero Malaria Project (KMP) attemps to define opperationally useful indicators of levels of transmission and disease and health system relevant monitoring indicators to evaluate the impact of disease control at the community or health facility level. The KMP is longitudinal community based study (N = 1024) in rural Southern Tanzania, investigating risk factors for malarial morbidity and developing household based malaria control strategies. Biweekly morbidity and bimonthly serological, parasitological and drug consumption surveys are carried out in all study households. Mosquito densities are measured biweekly in 50 sentinel houses by timed light traps. Determinants of transmission and indicators of exposure were not strongly aggregated within households. Subjective morbidity (recalled fever), objective morbidity (elevated body temperature and high parasitaemia) and chloroquine consumption were strongly aggregated within a few households. Nested analysis of anti-NANP40 antibody suggest that only approximately 30% of the titer variance can explained by household clustering and that the largest proportion of antibody titer variability must be explained by non-measured behavioral determinants relating to an individual's level of exposure within a household. Indicators for evaluation and monitoring and outcome measures are described within the context of health service management to describe control measure output in terms of community effectiveness.
Resumo:
The transmission and prevalence of Babesia equi and B. caballi are being studied. Rhipicephalus evertsi mimeticus an ixodid tick from Namibia was identified as a new vector of B. equi, however, R. turanicus, previously reported to be a vector, failed to transmit both B. equi and B. caballi in the laboratory. The accurate diagnosis of B. caballi is being investigated because the nature of its low level parasitaemia does not allow easy detection in thin blood smears, routinely used for diagnosis, by clinicians. Consequently its role as a pathogen remains obscure. The importance of identifying infected horses, destined for export to Babesia-free coutries, is also stressed. Thock and thin blood smears, serology (IFAT) and DNA probes are currently employed to study disease prevalence. To date 293 healthy, adult, throughbred horses have been screened by all three methods. The percentage positives are as follows: B. equi 4.4%, 70.6%, 13% and B. caballi 0.7%, 37%, 18.4% respectively. The DNA probes were more sensitive than blood smear examination for diagnosing carrier infections but are probably not sensitive enough to identify all carrier infections. A poor correlation was found between detection of the parasites' DNA and seropositivity. However, polymerase chain reaction could be used to amplify parasite DNA in a particular sample and its could result in more accurate diagnosis.
Resumo:
Malaria transmission-blocking immunity has been studied in natural malaria infections in man, during infections in animals and following artificial immunization of animals with sexual stage malaria parasites. Effective immunity, which prevents infectivity of a malarial infection to mosquitoes, has been observed under all of these circumstances. Two general types of effector mechanism have been identified. One is an antibody mediated mechanism which acts against the extracellular sexual stages of the parasite within the midgut of a blood feeding mosquito. The other is a cytokine mediated mechanism which inactivates the gametocytes of the parasites while in the circulation of the vertebrate host. Both effects have been observed during natural infections and following artificial immunization. The basis of induction of transmission-blocking immunity, including the nature of the memory for such immunity, however, may be very different in different host/parasite systems and during natural infection of following artificial immunization. Following artificial immunization a strong immune memory for transmission blocking immunity has been observed in animal systems. By contrast, following natural infections in man immune memory for transmission blocking immunity has been found to be weak and short lived if it occurs at all. It is suggested that the immunogens which induce natural transmission blocking immunity may be CD4+ independent.
Resumo:
Genetic and environmental components of factors contributing in malaria transmission are reviewed. Particular attention is given to density dependent regulation of vector populations in relation to the survival rate anophelines. The expectation of vector activities are different according to the epidemiological characteristics of malaria, mainly its stability. In areas with perennial and high transmission (stable malaria) vector control could reduce malaria related morbidity and mortality, whithout any effect on the endemicity. However this need further investigations. In areas where the transmission period is very short (unstable malaria), vector control will have an important impact on the disease and the endemicity. Control projects using indoor spraying with insecticide and impregnated bed nets are discussed.
Resumo:
World ecosystems differ significantly and a multidisciplinary malaria control approach must be adjusted to meet these requirements. These include a comprehensive understanding of the malaria vectors, their behavior, seasonal distribution and abundance, susceptibility to insecticides (physiological and behavioral), methods to reduce the numbers of human gametocyte carriers through effective health care systems and antimalarial drug treatment, urban malaria transmission versus rural or forest malaria transmission, and the impact of vaccine development. Many malaria vectors are members of species complexes and individual relationship to malaria transmission, seasonal distribution, bitting behavior, etc. is poorly understood. Additionaly, malaria patients are not examined for circulating gametocytes and both falciparum and vivax malaria patients may be highly infective to mosquitoes after treatment with currently used antimalarial drugs. Studies on the physiological and behavioral effects of DDT and other insecticides are inconclusive and need to be evalusted.
Resumo:
The present paper reviews our recent data concerning the use of immunological methods employing monoclonal antibodies and synthetic peptides to study malaria transmission and immunity and to diagnose plasmodial infection. As concerns malaria transmission, we studied the main vectors of human malaria and the plasmodial species transmitted in endemic areas of Rondônia state, Brazil. The natural infection on anopheline was evaluated by immunoradiometric assay (IRMA) using monoclonal antibodies to an immunodominant sporozoite surface antigen (CS protein) demonstrated to be species specific. Our results showed that among six species of Anopheles found infected, An. darlingi was the main vector transmitting Plasmodium falciparum and P. vivax malaria in the immediate vicinity of houses. In order to assess the level of anti-CS antibodies we studied, by IRMA using the synthetic peptide corresponding to the repetitive epitope of the sporozoite CS protein, sera of individuals living in the same areas where the entomological survey has been performed. In this assay the prevalence of anti-CS antibodies was very low and did not reflect the malaria transmission rate in the studied areas. In relation to malaria diagnosis, a monoclonal antibody specific to an epitope of a 50 kDa exoantigen, the major component of supernatant collected at the time of schizont rupture, was used as a probe for the detection of P. falciparum antigens. This assay seemed to be more sensitive than parasitological examination for malaria diagnosis since it was able to detect plasmodial antigens in both symptomatic and asymtomatic individuals with negative thick blood smear at different intervals after a last parasitologically confirmed confirmed attack of malaria.
Resumo:
The high rate of natural Trypanosoma cruzi infection found in opossums does not always correlate with appreciable densities of local triatomid populations. One alternative method which might bypass the invertebrate vector is direct transmission from mother to offspring. This possibility was investigated in five T. cruzi infected females and their litters (24 young). The influence of maternal antibodies transferred via lactation, on the course of experimental infection, was also examined. Our results show that neonatal transmission is probably not responsible for the high rate of natural T. cruzi infection among opossums. In addition antibodies of maternal origin confer a partial protection to the young. This was demonstrated by the finding of a double prepatency period and 4,5 fold lower levels of circulating parasites, in experimentally infected pouch young from infected as compared to control uninfected mothes. On the other hand, the duration of patent parasitemia was twice as long as that observed in the control group.
Resumo:
This article discusses dengue in terms of its conceptual and historical aspects, epidemiological and clinical/pathological nature, and evolution up to the present situation in Brazil. The author discusses the ecological relationship in both the production of dengue and its control. Comparison is made between traditional dengue-control programs and a proposed socially-controlled program of an ecological nature without the use of insecticides. Stress is placed on interdisciplinary technical and scientific activity, broadbased participation by communities in discussing methodological aspects involving them, and prospective evaluation comparing the communities selected for intervention and control communities with regard to clinical and subclinical dengue cases and vector infestation rates in relation to climatic, socio-economic, and behavioural factors.
Resumo:
We reviewed the control of transmission of leishmaniasis regarding chemotherapy, reservoirs elimination, vaccination and insect control through the use of chemical insecticides. We also discussed complementary measures like monitoring traps, impregnated bednets and curtains, repelents, pheromones, biological control, etc. A cost comparison of insecticide interventions through the use of products belonging to the four main chemical groups was also alone, comparing together conventional formulations versus a slow-release insecticide developed by the Núcleo de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro. We finally did recommendations on the situation that would justify an insecticide intervention to control sandflies.
Resumo:
Monoclonal antibodies (mAbs) and human sera from gametocyte carriers were applied in the bio-assay to test for their transmission-blocking capacity. Competition ELISA's have been developed for the detection of natural transmission blocking antibodies. Approximately 55 of the sera blocking in the bio-assay gave positive results in these competition ELISA's.
Resumo:
The 21kD ookinete antigen of Plasmodium berghei (Pbs 21) has been shown to elicit an effective and long lasting transmission blocking immune response in mice. Having cloned and sequenced this antigen (Paton et al. 1993) the sequence was compared to the genes of the same family previously identified in P. falciparum, P. gallinaceum (Kaslow et al. 1989) and P. reichenowi (Lal et al. 1990). Four conserved areas were identified in this comparison, to which degenerate oligonucleotides were designed. PCR amplification and screening of genomic libraries was then carried out using these oligonucleotides. The P. yoelii gene was successfully cloned and a number of novel P. vivax genes identified but the P. vivax homologue of Pbs21 remains elusive.
Resumo:
Despite the success of control programmes, schistosomiasis is still a serious public health problem in the world. More than 70 countries where 200 million individuals are evaluated to be infected of a total 600 million at risk. Though there have been important local success in the control of transmission, globally the infection has increased. Economic constrains in developing countries, environmental changes associated with migration and water resources development have been blocking the progress. The main objective of schistosomiasis control is to achieve reduction of disease due to schistosomiasis. We discussed the control measures like: health education, diagnosis and chemotherapy, safe water supplies, sanitation and snail control. We emphasized the need to give priority to school-age children and the importance of integrating the measures of control into locally available systems of health care. The control of schistosomiasis is directly related to the capacity of the preventive health services of an endemic country. The strategy of control requires long-term commitment from the international to the local level.