172 resultados para PHYSIOLOGICAL SOLUTION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have shown that the renin-angiotensin system (RAS) is involved in glucose homeostasis during acute hemorrhage. Since almost all of the physiological actions described for angiotensin II were mediated by AT1 receptors, the present experiments were designed to determine the participation of AT1 receptors in the hyperglycemic action of angiotensin II in freely moving rats. The animals were divided into two experimental groups: 1) animals submitted to intravenous administration of angiotensin II (0.96 nmol/100 g body weight) which caused a rapid increase in plasma glucose reaching the highest values at 5 min after the injection (33% of the initial values, P<0.01), and 2) animals submitted to intravenous administration of DuP-753 (losartan), a non-peptide antagonist of angiotensin II with AT1-receptor type specificity (1.63 µmol/100 g body weight as a bolus, iv, plus a 30-min infusion of 0.018 µmol 100 g body weight-1 min-1 before the injection of angiotensin II), which completely blocked the hyperglycemic response to angiotensin II (P<0.01). This inhibitory effect on glycemia was already demonstrable 5 min (8.9 ± 0.28 mM, angiotensin II, N = 9 vs 6.4 ± 0.22 mM, losartan plus angiotensin II, N = 11) after angiotensin II injection and persisted throughout the 30-min experiment. Controls were treated with the same volume of saline solution (0.15 M NaCl). These data demonstrate that the angiotensin II receptors involved in the direct and indirect hyperglycemic actions of angiotensin II are mainly of the AT1-type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunoglobulin G (IgG) of excellent quality for intravenous use was obtained from the cryosupernatant of human plasma by a chromatographic method based on a mixture of ion-exchange, DEAE-Sepharose FF and arginine Sepharose 4B affinity chromatography and a final purification step by Sephacryl S-300 HR gel filtration. The yield of 10 experimental batches produced was 3.5 g IgG per liter of plasma. A solvent/detergent combination of 1% Tri (n-butyl) phosphate and 1% Triton X-100 was used to inactivate lipid-coated viruses. Analysis of the final product (5% liquid IgG) based on the mean for 10 batches showed 94% monomers, 5.5% dimers and 0.5% polymers and aggregates. Anticomplementary activity was 0.3 CH50/mg IgG and prekallikrein activator levels were less than 5 IU/ml. Stability at 37ºC for 30 days in the liquid state was satisfactory. IgG was stored in flasks (2.5 g/flask) at 4 to 8ºC. All the characteristics of the product were consistent with the requirements of the 1997 Pharmacopée Européenne.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Karyological characteristics, i.e., diploid number, chromosome morphology and nucleolus organizer regions (NORs), biochemical characteristics, i.e., electrophoretic analysis of blood hemoglobin and the tissue enzymes lactate dehydrogenase (LDH), malate dehydrogenase (MDH), alcohol dehydrogenase (ADH), and phosphoglucose isomerase (PGI), and physiological characteristics, i.e., relative concentration of hemoglobin and intraerythrocytic concentrations of organic phosphates were analyzed for the species Callophysus macropterus collected from Marchantaria Island (white water system - Solimões River) and Anavilhanas Archipelago (black water system - Negro River). Karyological and biochemical data did not reveal significant differences between specimens collected at the two sites. However, the relative distribution of hemoglobin bands I and III (I = 16.33 ± 1.05 and III = 37.20 ± 1.32 for Marchantaria specimens and I = 6.33 ± 1.32 and III = 48.05 ± 1.55 for Anavilhanas specimens) and levels of intraerythrocytic GTP (1.32 ± 0.16 and 2.76 ± 0.18 for Marchantaria and Anavilhanas specimens, respectively), but not ATP or total phosphate, were significantly different, indicating a physiological adaptation to the environmental conditions of these habitats. It is suggested that C. macropterus specimens from the two collecting sites belong to a single population, and that they adjusted some physiological characteristics to adapt to local environmental conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose-6-phosphate dehydrogenase (G6PD) activity and the affinity for its substrate glucose-6-phosphate were investigated under conditions similar to the physiological environment in terms of ionic strength (I: 0.188), cation concentration, pH 7.34, and temperature (37oC). A 12.4, 10.4 and 21.4% decrease was observed in G6PD B, G6PD A+ and G6PD A- activities, respectively. A Km increase of 95.1, 94.4 and 95.4% was observed in G6PD B, G6PD A+ and G6PD A-, respectively, leading to a marked decrease in affinity. In conclusion, the observation of the reduced activity and affinity for its natural substrate reflects the actual pentose pathway rate. It also suggests a much lower NADPH generation, which is crucial mostly in G6PD-deficient individuals, whose NADPH availability is poor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurons in the rostral and caudal parts of the ventrolateral medulla (VLM) play a pivotal role in the regulation of sympathetic vasomotor activity and blood pressure. Studies in several species, including humans, have shown that these regions contain a high density of AT1 receptors specifically associated with neurons that regulate the sympathetic vasomotor outflow, or the secretion of vasopressin from the hypothalamus. It is well established that specific activation of AT1 receptors by application of exogenous angiotensin II in the rostral and caudal VLM excites sympathoexcitatory and sympathoinhibitory neurons, respectively, but the physiological role of these receptors in the normal synaptic regulation of VLM neurons is not known. In this paper we review studies which have defined the effects of specific activation or blockade of these receptors on cardiovascular function, and discuss what these findings tell us with regard to the physiological role of AT1 receptors in the VLM in the tonic and phasic regulation of sympathetic vasomotor activity and blood pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salivary cortisol is an index of plasma free cortisol and is obtained by a noninvasive procedure. We have been using salivary cortisol as a tool for physiological and diagnostic studies, among them the emergence of circadian rhythm in preterm and term infants. The salivary cortisol circadian rhythm in term and premature infants was established between 8 and 12 postnatal weeks. In the preterm infants the emergence of circadian rhythm was parallel to the onset of sleep rhythm. We also studied the use of salivary cortisol for screening for Cushing's syndrome (CS) in control and obese outpatients based on circadian rhythm and the overnight 1 mg dexamethasone (DEX) suppression test. Salivary cortisol was suppressed to less than 100 ng/dl after 1 mg DEX in control and obese patients. A single salivary cortisol measurement at 23:00 h and again after 1 mg DEX above the 90th percentile of the obese group values had sensitivity and specificity of 93 and 93% (23:00 h), and 91 and 94% (after DEX), respectively. The sensitivity improved to 100% when we combined both parameters. We also studied 11 CS children and 21 age-matched primary obese children for whom salivary cortisol sensitivity and specificity were 100/95% (23:00 h), and 100/95% (1 mg DEX), respectively. Similar to adults, sensitivity and specificity of 100% were obtained by combining 23:00 h and 1 mg DEX. The measurement of salivary cortisol is a useful tool for physiological studies and for the diagnosis of CS in children and adults on an outpatient basis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is a review of the research undertaken since 1971 on the behavior and physiological ecology of sloths. The animals exhibit numerous fascinating features. Sloth hair is extremely specialized for a wet tropical environment and contains symbiotic algae. Activity shows circadian and seasonal variation. Nutrients derived from the food, particularly in Bradypus, only barely match the requirements for energy expenditure. Sloths are hosts to a fascinating array of commensal and parasitic arthropods and are carriers of various arthropod-borne viruses. Sloths are known reservoirs of the flagellate protozoan which causes leishmaniasis in humans, and may also carry trypanosomes and the protozoan Pneumocystis carinii.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prions have been extensively studied since they represent a new class of infectious agents in which a protein, PrPsc (prion scrapie), appears to be the sole component of the infectious particle. They are responsible for transmissible spongiform encephalopathies, which affect both humans and animals. The mechanism of disease propagation is well understood and involves the interaction of PrPsc with its cellular isoform (PrPc) and subsequently abnormal structural conversion of the latter. PrPc is a glycoprotein anchored on the cell surface by a glycosylphosphatidylinositol moiety and expressed in most cell types but mainly in neurons. Prion diseases have been associated with the accumulation of the abnormally folded protein and its neurotoxic effects; however, it is not known if PrPc loss of function is an important component. New efforts are addressing this question and trying to characterize the physiological function of PrPc. At least four different mouse strains in which the PrP gene was ablated were generated and the results regarding their phenotype are controversial. Localization of PrPc on the cell membrane makes it a potential candidate for a ligand uptake, cell adhesion and recognition molecule or a membrane signaling molecule. Recent data have shown a potential role for PrPc in the metabolism of copper and moreover that this metal stimulates PrPc endocytosis. Our group has recently demonstrated that PrPc is a high affinity laminin ligand and that this interaction mediates neuronal cell adhesion and neurite extension and maintenance. Moreover, PrPc-caveolin-1 dependent coupling seems to trigger the tyrosine kinase Fyn activation. These data provide the first evidence for PrPc involvement in signal transduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the protective effect of suramin, an enzyme inhibitor and an uncoupler of G protein from receptors, on the myotoxic activity in mice of different crotalid snake venoms (A.c. laticinctus, C.v. viridis, C.d. terrificus, B. jararacussu, B. moojeni, B. alternatus, B. jararaca, L. muta). Myotoxicity was evaluated in vivo by injecting im the venoms (0.5 or 1.0 mg/kg) dissolved in physiological saline solution (0.1 ml) and measuring plasma creatine kinase (CK) activity. Two experimental approaches were used in mice (N = 5 for each group). In protocol A, 1 mg of each venom was incubated with 1.0 mg suramin (15 min, 37ºC, in vitro), and then injected im into the mice at a dose of 1.0 mg/kg (in vivo). In protocol B, venoms, 1.0 mg/kg, were injected im 15 min prior to suramin (1.0 mg/kg, iv). Before and 2 h after the im injection blood was collected by orbital puncture. Plasma was separated and stored at 4ºC for determination of CK activity using a diagnostic kit from Sigma. Preincubation of some venoms (C.v. viridis, A.c. laticinctus, C.d. terrificus and B. jararacussu) with suramin reduced (37-76%) the increase in plasma CK, except for B. alternatus, B. jararaca or L. muta venoms. Injection of suramin after the venom partially protected (34-51%) against the myotoxicity of B. jararacussu, A.c. laticinctus and C.d. terrificus venom, and did not protect against C.v. viridis, L. muta, B. moojeni, B. alternatus or B. jararaca venoms. These results show that suramin has an antimyotoxic effect against some, but not all the North and South American crotalid snake venoms studied here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolic studies using the in vitro non-recirculating blood-perfused isolated heart model require large volumes of blood. The present study was designed to determine whether heterologous pig blood collected from a slaughterhouse can be used as perfusate for isolated pig hearts perfused under aerobic and constant reduced flow conditions. Eight isolated working pig hearts perfused for 90 min at a constant flow of 1.5 ml g-1 min-1 with non-recirculated blood diluted with Krebs-Henseleit bicarbonate buffer at a hematocrit of 23% were compared to eight hearts subjected to the same protocol but perfused only with Krebs-Henseleit bicarbonate buffer solution. Hearts were paced at 100 bpm and subjected to aerobic perfusion at 38ºC. Hearts were weighed before perfusion and at the end of the experiment and the results are reported as percent weight gain (mean ± SD). Comparisons between groups were performed by the Student t-test (P<0.05). After 90 min of perfusion with modified Krebs-Henseleit, perfused hearts presented a larger weight gain than blood-perfused hearts (39.34 ± 9.27 vs 23.13 ± 5.42%, P = 0.003). Left ventricular end-diastolic pressure was higher in the modified Krebs-Henseleit-perfused group than in the blood group (2.8 ± 0.4 vs 2.3 ± 0.3 mmHg, respectively, P = 0.01). We conclude that heterologous blood perfusion, by preserving a more physiological myocardial water content, is a better perfusion fluid than modified Krebs-Henseleit solution for quantitative studies of myocardial metabolism and heart function under ischemic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of various hypertonic solutions on the intraventricular conduction, ventricular repolarization and the arrhythmias caused by the intravenous (iv) injection of bupivacaine (6.5 mg/kg) were studied in sodium pentobarbital-anesthetized mongrel dogs. Hypertonic solutions, given iv 5 min before bupivacaine, were 7.5% (w/v) NaCl, 5.4% (w/v) LiCl, 50% (w/v) glucose (2,400 mOsm/l, 5 ml/kg), or 20% (w/v) mannitol (1,200 mOsm/l, 10 ml/kg). Bupivacaine induced severe arrhythmias and ventricular conduction and repolarization disturbances, as reflected by significant increases in QRS complex duration, HV interval, IV interval and monophasic action potential duration, as well as severe hemodynamic impairment. Significant prevention against ventricular electrophysiologic and hemodynamic disturbances and ventricular arrhythmias was observed with 7.5% NaCl (percent increase in QRS complex duration: 164.4 ± 21.8% in the non-pretreated group vs 74.7 ± 14.1% in the pretreated group, P<0.05; percent increase in HV interval: 131.4 ± 16.1% in the non-pretreated group vs 58.2 ± 7.5% in the pretreated group, P<0.05; percent increase in monophasic action potential duration: 22.7 ± 6.8% in the non-pretreated group vs 9.8 ± 6.3% in the pretreated group, P<0.05; percent decrease in cardiac index: -46 ± 6% in the non-pretreated group vs -28 ± 5% in the pretreated group, P<0.05). The other three hypertonic solutions were ineffective. These findings suggest an involvement of sodium ions in the mechanism of hypertonic protection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA2a) is under the control of an SR protein named phospholamban (PLN). Dephosphorylated PLN inhibits SERCA2a, whereas phosphorylation of PLN at either the Ser16 site by PKA or the Thr17 site by CaMKII reverses this inhibition, thus increasing SERCA2a activity and the rate of Ca2+ uptake by the SR. This leads to an increase in the velocity of relaxation, SR Ca2+ load and myocardial contractility. In the intact heart, ß-adrenoceptor stimulation results in phosphorylation of PLN at both Ser16 and Thr17 residues. Phosphorylation of the Thr17 residue requires both stimulation of the CaMKII signaling pathways and inhibition of PP1, the major phosphatase that dephosphorylates PLN. These two prerequisites appear to be fulfilled by ß-adrenoceptor stimulation, which as a result of PKA activation, triggers the activation of CaMKII by increasing intracellular Ca2+, and inhibits PP1. Several pathological situations such as ischemia-reperfusion injury or hypercapnic acidosis provide the required conditions for the phosphorylation of the Thr17 residue of PLN, independently of the increase in PKA activity, i.e., increased intracellular Ca2+ and acidosis-induced phosphatase inhibition. Our results indicated that PLN was phosphorylated at Thr17 at the onset of reflow and immediately after hypercapnia was established, and that this phosphorylation contributes to the mechanical recovery after both the ischemic and acidic insults. Studies on transgenic mice with Thr17 mutated to Ala (PLN-T17A) are consistent with these results. Thus, phosphorylation of the Thr17 residue of PLN probably participates in a protective mechanism that favors Ca2+ handling and limits intracellular Ca2+ overload in pathological situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methods for reliable evaluation of spinal cord (SC) injury in rats at short periods (2 and 24 h) after lesion were tested to characterize the mechanisms implicated in primary SC damage. We measured the physiological changes occurring after several procedures for producing SC injury, with particular emphasis on sensorimotor functions. Segmental and suprasegmental reflexes were tested in 39 male Wistar rats weighing 250-300 g divided into three control groups that were subjected to a) anesthesia, b) dissection of soft prevertebral tissue, and c) laminectomy of the vertebral segments between T10 and L1. In the lesion group the SC was completely transected, hemisected or subjected to vertebral compression. All animals were evaluated 2 and 24 h after the experimental procedure by the hind limb motility index, Bohlman motor score, open-field, hot-plate, tail flick, and paw compression tests. The locomotion scale proved to be less sensitive than the sensorimotor tests. A reduction in exploratory movements was detected in the animals 24 h after the procedures. The hot-plate was the most sensitive test for detecting sensorimotor deficiencies following light, moderate or severe SC injury. The most sensitive and simplest test of reflex function was the hot-plate. The hemisection model promoted reproducible moderate SC injury which allowed us to quantify the resulting behavior and analyze the evolution of the lesion and its consequences during the first 24 h after injury. We conclude that hemisection permitted the quantitation of behavioral responses for evaluation of the development of deficits after lesions. Hind limb evaluation scores and spontaneous exploration events provided a sensitive index of immediate injury effects after SC lesion at 2 and 24 h. Taken together, locomotion scales, open-field, and hot-plate tests represent reproducible, quantitatively sensitive methods for detecting functional deficiencies within short periods of time, indicating their potential for the study of cellular mechanisms of primary injury and repair after traumatic SC injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The type of fluid used during resuscitation may have an important impact on tissue edema. We evaluated the impact of two different regimens of fluid resuscitation on hemodynamics and on lung and intestinal edema during splanchnic hypoperfusion in rabbits. The study included 16 female New Zealand rabbits (2.9 to 3.3 kg body weight, aged 8 to 12 months) with splanchnic ischemia induced by ligation of the superior mesenteric artery. The animals were randomized into two experimental groups: group I (N = 9) received 12 mL·kg-1·h-1 lactated Ringer solution and 20 mL/kg 6% hydroxyethyl starch solution; group II (N = 7) received 36 mL·kg-1·h-1 lactated Ringer solution and 20 mL/kg 0.9% saline. A segment from the ileum was isolated to be perfused. A tonometric catheter was placed in a second gut segment. Superior mesenteric artery (Q SMA) and aortic (Qaorta) flows were measured using ultrasonic flow probes. After 4 h of fluid resuscitation, tissue specimens were immediately removed for estimations of gut and lung edema. There were no differences in global and regional perfusion variables, lung wet-to-dry weight ratios and oxygenation indices between groups. Gut wet-to-dry weight ratio was significantly lower in the crystalloid/colloid-treated group (4.9 ± 1.5) than in the crystalloid-treated group (7.3 ± 2.4) (P < 0.05). In this model of intestinal ischemia, fluid resuscitation with crystalloids caused more gut edema than a combination of crystalloids and colloids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vacuolar H+-ATPase is a large multi-subunit protein that mediates ATP-driven vectorial H+ transport across the membranes. It is widely distributed and present in virtually all eukaryotic cells in intracellular membranes or in the plasma membrane of specialized cells. In subcellular organelles, ATPase is responsible for the acidification of the vesicular interior, which requires an intraorganellar acidic pH to maintain optimal enzyme activity. Control of vacuolar H+-ATPase depends on the potential difference across the membrane in which the proton ATPase is inserted. Since the transport performed by H+-ATPase is electrogenic, translocation of H+-ions across the membranes by the pump creates a lumen-positive voltage in the absence of a neutralizing current, generating an electrochemical potential gradient that limits the activity of H+-ATPase. In many intracellular organelles and cell plasma membranes, this potential difference established by the ATPase gradient is normally dissipated by a parallel and passive Cl- movement, which provides an electric shunt compensating for the positive charge transferred by the pump. The underlying mechanisms for the differences in the requirement for chloride by different tissues have not yet been adequately identified, and there is still some controversy as to the molecular identity of the associated Cl--conducting proteins. Several candidates have been identified: the ClC family members, which may or may not mediate nCl-/H+ exchange, and the cystic fibrosis transmembrane conductance regulator. In this review, we discuss some tissues where the association between H+-ATPase and chloride channels has been demonstrated and plays a relevant physiologic role.