225 resultados para Jump conditions
Resumo:
Bioactivity of the latex from Parahancornia amapa (Apocynaceae) on the development of Rhodnius nasutus (Hemiptera, Reduviidae, Triatominae) under laboratory conditions. The aim of this study was to verify the effects of the methanolic fraction of the latex from Parahancornia amapa (Apocynaceae) (PALAM) on individuals of the species Rhodnius nasutus Stål (Hemiptera, Triatominae). Many of the insects treated with the substance presented deformities and these may interfere in the feeding and possibly hinder the reproductive capacity. They also presented significant mortality during the molt when compared to the control group, noting a gradual increase in mortality. The treated insects also presented delayed nymphal development (5th instar) and higher adult longevity.
Resumo:
Nyssomyia whitmani (Antunes and Coutinho, 1939) has been considered as a complex of cryptic species, and some of the populations of this complex plays an important role in the transmission of Leishmania spp. in Brazil. The present study reports the biological aspects concerning the productivity out of eggs and the development time of the descendants of females obtained in Dourados municipality, Mato Grosso do Sul state. The females were captured with modified electric aspirators, fed in hamsters and further individualized in containers for breeding. At the insectary, temperature and relative humidity were maintained on average of 24.5 °C and 67.3%, respectively. From 944 females 3737 eggs were obtained, 748 (20.0%) evolved to the stage of larvae, and 93 (12.4%) of these reached adult stage. The life cycle lasted 80.6 days and the last larval instar was the longest. The use of a higher protein diet revealed a significant improvement in larval development.
Resumo:
There are several regions of the world where soil N analysis and/or N budgets are not used to determine how much N to apply, resulting in higher than needed N inputs, especially when manure is used. One such region is the North Central "La Comarca Lagunera", one of the most important dairy production areas of Mexico. We conducted a unique controlled greenhouse study using 15N fertilizer and 15N isotopic-labeled manure that was labeled under local conditions to monitor N cycling and recovery under higher N inputs. The manure-N treatment was applied only once and was incorporated in the soil before planting the first forage crop at an equivalent rate of 30, 60 and 120 Mg ha-1 dry manure. The 15N treatments were equivalent to 120 and 240 kg ha-1 (NH4)2SO4-N for each crop. The total N fertilizer for each N fertilized treatment were 360, and 720 kg ha-1 N. We found very low N recoveries: about 9 % from the manure N inputs, lower than the 22 to 25 % from the fertilizer N inputs. The manure N recovered belowground in soil and roots ranged from 82 to 88 %. The low recoveries of N by the aboveground and low soil inorganic nitrate (NO3-N) and ammonium (NH4-N) content after the third harvested suggested that most of the 15N recovered belowground was in the soil organic form. The losses from manure N inputs ranged from 3 to 11 %, lower than the 34 to 39 % lost from fertilizer N sources. Our study shows that excessive applications of manure or fertilizer N that are traditionally used in this region will not increase the rate of N uptake by aboveground compartment but will increase the potential for N losses to the environment.
Resumo:
Rainfall in the semiarid region of Pernambuco is characterized by irregular distribution in time and space, which significantly hinders the rainfed agriculture in the region. This work aims to evaluate the temporal profile of soil moisture in the semiarid region of the Pernambuco State (Brazil) and the effect of different soil surface conditions on soil water content variation and the yield of rainfed beans. To monitor soil water content, five plots 4.5 m wide by 11 m long were installed in a Yellow Argisol (Ultisol). The following treatments were adopted in the experimental plots: natural vegetation, bean intercropped with cactus, beans planted down the slope, beans planted along contour lines with mulch and rock barriers, and bare soil. In each plot, eight PVC access tubes were installed for monitoring the soil water content profile at depths of 0.20 and 0.40 m using a neutron probe device. The surface condition significantly influenced the soil water content variation, both in the dry and rainy seasons. The use of mulch, associated with rock barriers, provided higher soil water content levels than the other treatments and increased the rainfed beans production.
Resumo:
An accurate estimation of hydraulic fluxes in the vadose zone is essential for the prediction of water, nutrient and contaminant transport in natural systems. The objective of this study was to simulate the effect of variation of boundary conditions on the estimation of hydraulic properties (i.e. water content, effective unsaturated hydraulic conductivity and hydraulic flux) in a one-dimensional unsaturated flow model domain. Unsaturated one-dimensional vertical water flow was simulated in a pure phase clay loam profile and in clay loam interlayered with silt loam distributed according to the third iteration of the Cantor Bar fractal object Simulations were performed using the numerical model Hydrus 1D. The upper and lower pressure heads were varied around average values of -55 cm for the near-saturation range. This resulted in combinations for the upper and lower constant head boundary conditions, respectively, of -50 and -60 cm, -40 and -70 cm, -30 and -80 cm, -20 and -90 cm, and -10 and -100 cm. For the drier range the average head between the upper and lower boundary conditions was set to -550 cm, resulting in the combinations -500 and -600 cm, -400 and -700 cm, -300 and -800 cm, -200 and -900 cm, and -100 and -1,000 cm, for upper and lower boundary conditions, respectively. There was an increase in water contents, fluxes and hydraulic conductivities with the increase in head difference between boundary conditions. Variation in boundary conditions in the pure phase and interlayered one-dimensional profiles caused significant deviations in fluxes, water contents and hydraulic conductivities compared to the simplest case (a head difference between the upper and lower constant head boundaries of 10 cm in the wetter range and 100 cm in the drier range).
Resumo:
Inoculation with arbuscular mycorrhizal fungi (AMF) of tree seedlings in the nursery is a biotechnological strategy to improve growth, survival after transplanting, biomass production and to reduce the use of fertilizers. Archontophoenix alexandrae and Euterpe edulis are palm species used in southern Brazil to produce the palm heart, the latter being included in the list of threatened species due to the overexploitation of its native population. The purpose of this paper was to evaluate the effect of mycorrhizal inoculation on growth and physiological parameters of A. alexandrae and E. edulis. After germination, the seedlings were inoculated (AMF) or not (CTL) with AMF in the treatments. Values of chlorophyll content, biomass and shoot phosphorus were not statistically different between the AMF and CTL treatments, after five months in the greenhouse. Inoculation with AMF significantly increased the levels of starch and soluble carbohydrates in shoots and roots of both species. Under field conditions, AMF had no effect on stem diameter and height after 12 and 24 months, but total plant biomass and leaf, stem and root biomass were greater in AMF than in CTL plants. The data indicated that AMF inoculation in the nursery has a strong effect on biomass accumulation after growing for 24 months under field conditions. Therefore, AMF inoculation should be considered an important strategy to increase growth and production of these economically important tropical palm species.
Resumo:
ABSTRACT The semiarid region of northeastern Brazil has a large area occupied by Planosols, where in the State of Pernambuco these soils are mainly used for livestock farming and subsistence crops. The knowledge on these soils is limited, which compromises the understanding on their behavior, potentialities and limitations.This study aimed to analyze morphological, chemical, physical and mineralogical attributes of Planosols developed under different geoenvironmental conditions. Morphological descriptions and chemical, physical and mineralogical analyses were performed in four profiles of Planosols along a rainfall gradient. An increase in rainfall allowed for an increase in the clay content in the Bt horizon and a reduction in ESP, EC, Na+, CEC, S, pH (water and KCl) and soil density. Horizons A and E were thicker in Planosols in more humid environments. The increase in ESP associated with the presence of expansive minerals (smectite and vermiculite) allowed the development of a prismatic structure in Haplic Planosols and a columnar structure in Natric Planosols. The mineralogical assembly is indicative of poorly weathered soils. The mineralogical assemblies of the silt and clay fractions were similar in the different geoenvironments, while higher contents of easily alterable minerals were observed in the composition of the sand fraction in environments with a drier climate.
Resumo:
This paper describes the albedo (r) and estimates of net radiation and global solar irradiance for green beans crop (Phaseolus vulgaris L.), cultivated in greenhouse with cover of polyethylene and field conditions, in Botucatu, SP, Brazil (22º 54' S; 48º 27' W; 850 m). The solar global irradiance (Rg) and solar reflected radiation (Rr) were used to estimate the albedo through the ratio between Rr and Rg. The diurnal curves of albedo were obtained for days with clear sky and partially cloudy conditions, for different phenological stages of the crop. The albedo ranged with the solar elevation, the environment and the phenological stages. The cloudiness range have almost no influence on the albedo diurnal amount. The estimation of radiation were made by linear regression, using the global solar irradiance (Rg) and net short-waves radiation (Rc) as independent variables. All estimates of radiation showed better adjustment for specific phenological periods compared to the entire crop growing cycle. The net radiation in the greenhouse has been estimated by the global solar irradiance measured at field conditions.
Resumo:
The aim of this study was to characterize gas exchange responses of young cashew plants to varying photosynthetic photon flux density (PPFD), temperature, vapor-pressure deficit (VPD), and intercellular CO2 concentration (Ci), under controlled conditions. Daily courses of gas exchange and chlorophyll a fluorescence parameters were measured under natural conditions. Maximum CO2 assimilation rates, under optimal controlled conditions, were about 13 mmol m-2 s-1 , with light saturation around 1,000 mmol m-2 s-1. Leaf temperatures between 25ºC and 35ºC were optimal for photosynthesis. Stomata showed sensitivity to CO2, and a closing response with increasing Ci. Increasing VPD had a small effect on CO2 assimilation rates, with a small decrease above 2.5 kPa. Stomata, however, were strongly affected by VPD, exhibiting gradual closure above 1.5 kPa. The reduced stomatal conductances at high VPD were efficient in restricting water losses by transpiration, demonstrating the species adaptability to dry environments. Under natural irradiance, CO2 assimilation rates were saturated in early morning, following thereafter the PPFD changes. Transient Fv/Fm decreases were registered around 11h, indicating the occurrence of photoinhibition. Decreases of excitation capture efficiency, decreases of effective quantum yield of photosystem II, and increases in non-photochemical quenching were consistent with the occurrence of photoprotection under excessive irradiance levels.
Resumo:
The objectives of this work were to evaluate two greenhouse screening methods for sudden death syndrome (SDS) and to determine which one is best correlated with field resistance of soybean genotypes. The evaluations were done with three sets of genotypes that were classified as partially resistant, intermediate, and susceptible to SDS based on previous field evaluations. These three sets were independently evaluated for greenhouse SDS reactions using cone and tray inoculation methods. Plants were infected using grains of white sorghum [Sorghum bicolor (L.) Moench] infested with Fusarium solani f. sp. glycines. Foliar symptom severity was rated 21 days after emergence. The cone and field SDS ratings were significantly correlated and ranged from 0.69 for set 1 to 0.51 for set 3. Correlations of SDS ratings of genotypes between field and greenhouse tray ratings were significant for set 1 and not significant for set 2. The cone method showed the highest correlation with field results and is recommended to screen soybean genotypes for SDS resistance.
Resumo:
Micro, macro and mesofauna in the soil often respond to fluctuating environmental conditions, resulting in changes of abundance and community structure. Effects of changing soil parameters are normally determined with samples taken in the field and brought to the laboratory, i.e. where natural environmental conditions may not apply. We devised a method (STAFD - soil tubes for artificial flood and drought), which simulates the hydrological state of soil in situ using implanted cores. Control tubes were compared with treatment tubes in which floods of 15, 30, 60 and 90 days, and droughts of 60, 90 and 120 days were simulated in the field. Flooding and drought were found to reduce number of individuals in all soil faunal groups, but the response to drought was slower and not in proportion to the expected decrease of the water content. The results of the simulated floods in particular show the value of the STAFD method for the investigation of such extreme events in natural habitats.
Resumo:
Standard ecological methods (pitfall traps, trunk eclectors and soil cores) were used to evaluate collembolan community responses to different flooding intensities. Three sites of a floodplain habitat near Mainz, Germany, with different flooding regimes were investigated. The structures of collembolan communities are markedly different depending on flooding intensity. Sites more affected by flooding are dominated by hygrophilic and hygrotolerant species, whereas the hardwood floodplain is dominated by mesophilic species. The survival strategies of the hygrophilic and hygrotolerant species include egg diapause and passive drifting. The physiological adaptations to hypoxic conditions of several collembolan species were analyzed using a microcalorimeter. The activities were tested under normoxic and hypoxic/anoxic conditions as well as during post-hypoxic recovery. Lactate was increased after hypoxic intervals in the species studied, suggesting that, in addition to a massive decrease in metabolic rate, a modest glycolytic activity may be involved in the tolerance to hypoxia.
Resumo:
The objective of this work was to evaluate the resistance of genetically modified clones of potato to Potato virus Y (PVY) under field conditions. Genetically modified plants were compared with nontransformed plants of the same cultivar. The plots were flanked with potato plants infected with both PVYº and PVY N strains (spread lines), in order to provide the experimental area with the source of virus, which was naturally spread by the native aphid population. The experiment was weekly monitored by visual inspections and by DAS-Elisa in the plants produced from the harvested tubers, in order to evaluate the resistance of transgenic plants throughout the plant growth cycle. By the end of the third year, no infection symptoms were observed in the 1P clone; clone 63P showed 1% of infection, in contrast to about 90% of nontransformed plants infected. The stable expression of resistance to PVY provided by the coat protein gene was obtained in genetically modified clones of potato plants cultivar Achat under field conditions, during three consecutive years.
Resumo:
The objective of this work was to evaluate the efficiency of soybean (Glycine max) in intercepting and using solar radiation under natural field conditions, in the Amazon region, Brazil. The meteorological data and the values of soybean growth and leaf area were obtained from an agrometeorological experiment carried out in Paragominas, Pará state, during 2007 and 2008. The radiation use efficiency (RUE) was obtained from the ratio between the above-ground biomass production and the intercepted photosynthetically active radiation (PAR) accumulated to 99 and 95 days after sowing, in 2007 and 2008, respectively. Climatic conditions during the experiment were very distinct, with reduction in rainfall in 2007, which began during the soybean mid-cycle, due to the El Niño phenomenon. An important reduction in the leaf area index and biomass production was observed during 2007. Under natural field conditions in the Amazon region, the values of RUE were 1.46 and 1.99 g MJ-1 PAR in the 2007 and 2008 experiments, respectively. The probable reason for the differences found between these years might be associated to the water restriction in 2007 coupled with the higher air temperature and vapor pressure deficit, and also to the increase in the fraction of diffuse radiation that reached the land surface in 2008.
Resumo:
The objective of this work was to set up ideal conditions for conidia mass production of Dicyma pulvinata. Four isolates were compared in terms of their growth and conidia production on various substrates (grains of parboiled rice, common rice, maize and wheat, besides chipped maize and rice husk), temperatures (19, 22, 25, 28 and 31ºC), growth containers (aluminum trays, polypropylene bags and Erlenmeyers) and light regimes (continuous darkness, 6 and 12 hours of light/darkness, and continuous light). Temperature effects on conidia germination capacity were also evaluated. The experiments were done in randomized complete block designs, in factorial arrangements (isolates x treatments - substrates, containers, temperatures and light regimes), with four replicates. In general, parboiled rice and polypropylene bags provided the best development of the fungus. Complete darkness and 6 hours of light increased mycelial growth, whereas continuous light favored sporulation. All tested temperatures favored the cultures of the fungus, except 31ºC. Temperatures between 19 and 25ºC ensure spore germination of more than 76%.