126 resultados para ANCHORED PROTEIN


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) envelope protein 2 (E2) is involved in viral binding to host cells. The aim of this work was to produce recombinant E2B and E2Y HCV proteins in Escherichia coli and Pichia pastoris, respectively, and to study their interactions with low-density lipoprotein receptor (LDLr) and CD81 in human umbilical vein endothelial cells (HUVEC) and the ECV304 bladder carcinoma cell line. To investigate the effects of human LDL and differences in protein structure (glycosylated or not) on binding efficiency, the recombinant proteins were either associated or not associated with lipoproteins before being assayed. The immunoreactivity of the recombinant proteins was analysed using pooled serum samples that were either positive or negative for hepatitis C. The cells were immunophenotyped by LDLr and CD81 using flow cytometry. Binding and binding inhibition assays were performed in the presence of LDL, foetal bovine serum (FCS) and specific antibodies. The results revealed that binding was reduced in the absence of FCS, but that the addition of human LDL rescued and increased binding capacity. In HUVEC cells, the use of antibodies to block LDLr led to a significant reduction in the binding of E2B and E2Y. CD81 antibodies did not affect E2B and E2Y binding. In ECV304 cells, blocking LDLr and CD81 produced similar effects, but they were not as marked as those that were observed in HUVEC cells. In conclusion, recombinant HCV E2 is dependent on LDL for its ability to bind to LDLr in HUVEC and ECV304 cells. These findings are relevant because E2 acts to anchor HCV to host cells; therefore, high blood levels of LDL could enhance viral infectivity in chronic hepatitis C patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rapid decrease in parasitaemia remains the major goal for new antimalarial drugs and thus, in vivo models must provide precise results concerning parasitaemia modulation. Hydroxyethylamine comprise an important group of alkanolamine compounds that exhibit pharmacological properties as proteases inhibitors that has already been proposed as a new class of antimalarial drugs. Herein, it was tested the antimalarial property of new nine different hydroxyethylamine derivatives using the green fluorescent protein (GFP)-expressing Plasmodium bergheistrain. By comparing flow cytometry and microscopic analysis to evaluate parasitaemia recrudescence, it was observed that flow cytometry was a more sensitive methodology. The nine hydroxyethylamine derivatives were obtained by inserting one of the following radical in the para position: H, 4Cl, 4-Br, 4-F, 4-CH3, 4-OCH3, 4-NO2, 4-NH2 and 3-Br. The antimalarial test showed that the compound that received the methyl group (4-CH3) inhibited 70% of parasite growth. Our results suggest that GFP-transfected P. berghei is a useful tool to study the recrudescence of novel antimalarial drugs through parasitaemia examination by flow cytometry. Furthermore, it was demonstrated that the insertion of a methyl group at the para position of the sulfonamide ring appears to be critical for the antimalarial activity of this class of compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate an enzyme-linked immunoassay with recombinant rhoptry protein 2 (ELISA-rROP2) for its ability to detectToxoplasma gondii ROP2-specific IgG in samples from pregnant women. The study included 236 samples that were divided into groups according to serological screening profiles for toxoplasmosis: unexposed (n = 65), probable acute infection (n = 48), possible acute infection (n = 58) and exposed to the parasite (n = 65). When an indirect immunofluorescence assay forT. gondii-specific IgG was considered as a reference test, the ELISA-rROP2 had a sensitivity of 61.8%, specificity of 62.8%, predictive positive value of 76.6% and predictive negative value of 45.4% (p = 0.0002). The ELISA-rROP2 reacted with 62.5% of the samples from pregnant women with probable acute infection and 40% of the samples from pregnant women with previous exposure (p = 0.0180). Seropositivity was observed in 50/57 (87.7%) pregnant women with possible infection. The results underscored that T. gondii rROP2 is recognised by specific IgG antibodies in both the acute and chronic phases of toxoplasmosis acquired during pregnancy. However, the sensitivity of the ELISA-rROP2 was higher in the pregnant women with probable and possible acute infections and IgM reactivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leptospirosis is a zoonotic disease caused by pathogenic spirochetes of theLeptospira genus. Vaccination with bacterins has severe limitations. Here, we evaluated the N-terminal region of the leptospiral immunoglobulin-like B protein (LigBrep) as a vaccine candidate against leptospirosis using immunisation strategies based on DNA prime-protein boost, DNA vaccine, and subunit vaccine. Upon challenge with a virulent strain ofLeptospira interrogans, the prime-boost and DNA vaccine approaches induced significant protection in hamsters, as well as a specific IgG antibody response and sterilising immunity. Although vaccination with recombinant fragment of LigBrep also produced a strong antibody response, it was not immunoprotective. These results highlight the potential of LigBrep as a candidate antigen for an effective vaccine against leptospirosis and emphasise the use of the DNA prime-protein boost as an important strategy for vaccine development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chagas disease, which is caused by the intracellular protozoanTrypanosoma cruzi, is a serious health problem in Latin America. The heart is one of the major organs affected by this parasitic infection. The pathogenesis of tissue remodelling, particularly regarding cardiomyocyte behaviour after parasite infection, and the molecular mechanisms that occur immediately following parasite entry into host cells are not yet completely understood. Previous studies have reported that the establishment of parasitism is connected to the activation of the phosphatidylinositol-3 kinase (PI3K), which controls important steps in cellular metabolism by regulating the production of the second messenger phosphatidylinositol-3,4,5-trisphosphate. Particularly, the tumour suppressor PTEN is a negative regulator of PI3K signalling. However, mechanistic details of the modulatory activity of PTEN on Chagas disease have not been elucidated. To address this question, H9c2 cells were infected with T. cruzi Berenice 62 strain and the expression of a specific set of microRNAs (miRNAs) were investigated. Our cellular model demonstrated that miRNA-190b is correlated to the decrease of cellular viability rates by negatively modulating PTEN protein expression in T. cruzi-infected cells.