114 resultados para biodiesel wastewater


Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT The feasibility of using sewage wastewater as a water and nutrient source for plants is an alternative to harness agricultural natural resource, observing its influence on the organic matter dynamics and soil energy. Our objective here was to evaluate the effects of applying different doses of effluent from a sewage treatment plant, in Janaúba – MG, Brazil, over the physical attributes of a soil grown with “Prata Anã” banana. From soil sample collection at depths of 0-20, 20-40, and 40-60 cm, we determined the following soil properties: soil density, total porosity, macroporosity, microporosity, organic matter, clay dispersed in water and stability of soil aggregate. The experimental design was in randomized blocks with four repetitions. Wastewater raising doses promoted increase in suspended solids, contributing to macroporosity reduction at 20-40 and 40-60 cm depths; as well as a reduction in organic matter within 0-20 cm layer. Clay dispersal was observed in the depths of 0-20 cm, being derived from an increase in sodium content. Concurrently, there was a reduction of soil aggregate stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Swine wastewater (SW) application in agricultural soils may affect its microbial community in a long term. The objective of this study was to evaluate prospective changes in soil bacterial community after eight years continuous application of swine wastewater. The wastewater doses tested were 0; 100; 200 and 300 m3 ha-1, being applied from the beginning of the experiment and with or without recommended fertilization. Three soil samples were taken from each plot for determinations of basal respiration, microbial biomass and metabolic quotient. We also performed DGGE analysis and made a correlation between soil chemical conditions and microbial activity. Microbial community underwent significant structural changes from swine wastewater applications. Higher SW doses (200 and 300 m3 ha-1) influenced significantly (p <0.05) and benefitted certain bacteria groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O uso da glicerina pura é amplamente empregada na conservação de peças anatômicas, a qual é muito eficiente e não tóxica para os manipuladores, porém é extremamente cara e inviável para muitos laboratórios de anatomia. O propósito do estudo foi demonstrar a viabilidade da glicerina semipurificada proveniente da produção do biodiesel na conservação de peças anatômicas. O trabalho utilizou 15 corações e 30 rins de suínos provenientes de frigorífico. A glicerina foi adquirida em usina de biodiesel e apresentava a seguinte composição: Glicerol 80,5%; Umidade 12,8%; NaCl 6,3% e Ácidos Graxos 0,4%. As vísceras foram resfriadas, dissecadas, fixadas, desidratadas e glicerinizadas. Os órgãos foram mensurados, analisados e fotodocumentados antes e após protocolo de preservação. A glicerina semipurificada promoveu discreta diminuição nas dimensões das estruturas anatômicas (massa, altura e largura), todavia não houve diferença estatística. Essa glicerina preservou as características de consistência flexibilidade das peças anatômicas, além de reduzir o custo e a eliminação dos gases tóxicos. O principal alcance deste estudo foi a preservação das características morfológicas e a melhoria do processo ensino-aprendizagem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-phase anaerobic biodigestor was employed in order to analyze methane production with different manipueira organic loading rates. The acidogenic phase was carried out in a batch process whereas the methanogenic in an up-flow anaerobic fixed bed reactor with continuous feeding. The organic loading rates varied from 0.33 up to 8.48g of Chemical Demand Oxygen (COD)/L.day. The highest content of methane, 80.9%, was obtained with organic loading rate of 0.33g and the lowest, 56.8%, with 8.48gCOD/L.d. The highest reduction of COD, 88.89%, was obtained with organic loading rate of 2.25g and the lowest, 54.95%, with 8.48gCOD/L.d. From these data it was possible to realize that anaerobic biodigestion can be managed in at least two ways, i.e., for energy production (methane) or for organic loading reduction. The organic loading rate should be calculated as part of the purpose of the treatment to be accomplished.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of liquid cassava waste (manipueira) as the medium for the biotransformation of citronellol using a Penicillium sp strain was studied. The strain was able to grow in the waste and production of cellular mass reaching 25 g/L over three days of contact of the spores with the medium. Submerged cultures of Penicillium sp grown in manipueira were able to convert the substrate into cis- and trans-rose oxides when the cells were transferred into a mineral medium for the biotransformation experiments. The production of rose oxide increased by more than 2.4 times using this 2 media process as compared to processes using only a manipueira medium (cassava medium). Auto-oxidation products were not detected in the control experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research note addresses the role of organic solvent amount in the production of fatty acid ethyl esters from soybean oil. N-hexane was chosen as solvent and two commercial immobilized lipases as catalysts, Novozym 435 and Lipozyme IM. The reactions were conducted in 6 hours, varying the solvent to oil ratio from zero to 50 (v/wt) and adopting adopting for Novozym 435: 65 ºC, enzyme concentration (E, wt%) = 5, oil to ethanol molar ratio (R) = 1:10, water addition (H, wt%) = 0, and for Lipozyme IM: 35 ºC, E = 5 wt%, R = 1:3, H = 10 wt%. For Lipozyme IM, an increase in solvent amount is shown to lead to an enhancement of reaction conversion, while a negligible effect was found for Novozym 435. When using 30 mL of solvent the reaction conversions were 88% for Lipozyme IM and 15% for Novozym 435.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microalgae biomass production from swine wastewater is a possible solution for the environmental impact generated by wastewater discharge into water sources. The biomass can be added to fish feed, which can be used in the formulation of meat products. This work addresses the adaptation of the microalgae Spirulina platensis (Arthrospira platensis) in swine wastewater and the study of the best dilution of the wastewater for maximum biomass production and for removal of Chemical Oxygen Demand (COD), ammonia and phosphorous to the microalgae. The cultivation of Spirulina platensis, strain Paracas presented maximum cellular concentrations and maximum specific growth rates in the wastewater concentration of 5.0 and 8.5%. The highest COD removals occurred with 26.5 and 30.0% of wastewater in the medium. The maximum removal of total phosphorous (41.6%), was with 8.5% of wastewater, which is related to the microalgae growth. The results of Spirulina culture in the swine wastewater demonstrated the possibility of using these microalgae for the COD and phosphorous removal and for biomass production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study and use of natural pigments in food industries have increased in recent years due to the toxicity presented by artificial pigments. Monascus ruber is a filamentous fungus that produces red, orange, and yellow pigments under different growing conditions. The growth of health food market has increased in parallel with the growth in biofuels production, such as biodiesel, which generates a concomitant increase in the production of glycerin that can be used in bioprocesses. The objective of this study was to use glycerin and glucose as substrates in the production of natural pigments in a bioreactor. The culture of Monascus ruber was carried out in a Bioflo III reactor with 4 L of working volume and pH, temperature, aeration, and agitation control. The highest pigment production was observed after 60 hours of fungal culture with 8.28 UA510 of red pigment. The pH range remained from 5.45 to 6.23 favoring the release of red pigment in the medium. This study shows the feasibility of the production of natural pigments by Monascus ruber in a bioreactor using a co-product of biodiesel without previous treatment as a substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Olive mill wastewater, hereafter noted as OMWW was tested for its composition in phenolic compounds according to geographical areas of olive tree, i.e. the plain and the mountainous areas of Tadla-Azilal region (central Morocco). Biophenols extraction with ethyl acetate was efficient and the phenolic extract from the mountainous areas had the highest concentration of total phenols' content. Fourier-Transform-Middle Infrared (FT-MIR) spectroscopy of the extracts revealed vibration bands corresponding to acid, alcohol and ketone functions. Additionally, HPLC-ESI-MS analyses showed that phenolic alcohols, phenolic acids, flavonoids, secoiridoids and derivatives and lignans represent the most abundant phenolic compounds. Nüzhenide, naringenin and long chain polymeric substances were also detected. Mountainous areas also presented the most effective DPPH scavenging potential compared to plain areas; IC50 values were 11.7 ± 5.6 µg/ml and 30.7 ± 4.4 µg/ml, respectively. OMWW was confirmed as a rich source of natural phenolic antioxidant agents.