121 resultados para Hypothetical protein
Resumo:
New Mycobacterium leprae protein antigens can contribute to improved serologic tests for leprosy diagnosis/classification and multidrug therapy (MDT) monitoring. This study describes seroreactivity to M. leprae proteins among participants from three highly endemic leprosy areas in Brazil: central-western Goiânia/Goiás (GO) (n = 225), Rondonópolis/Mato Grosso (MT) (n = 764) and northern Prata Village/Pará (PA) (n = 93). ELISA was performed to detect IgG to proteins (92f, 46f, leprosy IDRI diagnostic-1, ML0405, ML1213) and IgM to phenolic glycolipid-I (PGL-I). Multibacillary (MB) leprosy had positive rates for PGL-I that were similar to those for proteins; however, some anti-PGL-I-negative subjects were positive for proteins, suggesting that adding protein antigen to PGL-I can enhance the sensitivity of MB leprosy detection. In MT, different degrees of seroreactivity were observed and ranked for MB, former patients after MDT, paucibacillary (PB) leprosy, household contact (HHC) and endemic control (EC) groups. The seroreactivity of PB patients was low in GO and MT. HHCs from different endemic sites had similar IgG antibody responses to proteins. 46f and 92f were not recognised by most tuberculosis patients, ECs or HHCs within GO, an area with high BCG vaccination coverage. Low positivity in EC and HHC was observed in PA and MT. Our results provide evidence for the development of an improved serologic test that could be widely applicable for MB leprosy testing in Brazil.
Resumo:
When grown in the presence of exogenous collagen I, Mycobacterium bovis BCG was shown to form clumps. Scanning electron microscopy examination of these clumps revealed the presence of collagen fibres cross-linking the bacilli. Since collagen is a major constituent of the eukaryotic extracellular matrices, we assayed BCG cytoadherence in the presence of exogenous collagen I. Collagen increased the interaction of the bacilli with A549 type II pneumocytes or U937 macrophages, suggesting that BCG is able to recruit collagen to facilitate its attachment to host cells. Using an affinity chromatography approach, we have isolated a BCG collagen-binding protein corresponding to the previously described mycobacterial laminin-binding histone-like protein (LBP/Hlp), a highly conserved protein associated with the mycobacterial cell wall. Moreover, Mycobacterium leprae LBP/Hlp, a well-characterized adhesin, was also able to bind collagen I. Finally, using recombinant fragments of M. leprae LBP/Hlp, we mapped the collagen-binding activity within the C-terminal domain of the adhesin. Since this protein was already shown to be involved in the recognition of laminin and heparan sulphate-containing proteoglycans, the present observations reinforce the adhesive activities of LBP/Hlp, which can be therefore considered as a multifaceted mycobacterial adhesin, playing an important role in both leprosy and tuberculosis pathogenesis.
Resumo:
A hallmark of group/species A rotavirus (RVA) replication in MA-104 cells is the logarithmic increase in viral mRNAs that occurs four-12 h post-infection. Viral protein synthesis typically lags closely behind mRNA synthesis but continues after mRNA levels plateau. However, RVA non-structural protein 1 (NSP1) is present at very low levels throughout viral replication despite showing robust protein synthesis. NSP1 has the contrasting properties of being susceptible to proteasomal degradation, but being stabilised against proteasomal degradation by viral proteins and/or viral mRNAs. We aimed to determine the kinetics of the accumulation and intracellular distribution of NSP1 in MA-104 cells infected with rhesus rotavirus (RRV). NSP1 preferentially localises to the perinuclear region of the cytoplasm of infected cells, forming abundant granules that are heterogeneous in size. Late in infection, large NSP1 granules predominate, coincident with a shift from low to high NSP1 expression levels. Our results indicate that rotavirus NSP1 is a late viral protein in MA-104 cells infected with RRV, presumably as a result of altered protein turnover.
Resumo:
The genetic diversity displayed by Plasmodium falciparum, the most deadly Plasmodium species, is a significant obstacle for effective malaria vaccine development. In this study, we identified genetic polymorphisms in P. falciparum glutamate-rich protein (GLURP), which is currently being tested in clinical trials as a malaria vaccine candidate, from isolates found circulating in the Brazilian Amazon at variable transmission levels. The study was performed using samples collected in 1993 and 2008 from rural villages situated near Porto Velho, in the state of Rondônia. DNA was extracted from 126 P. falciparum-positive thick blood smears using the phenol-chloroform method and subjected to a nested polymerase chain reaction protocol with specific primers against two immunodominant regions of GLURP, R0 and R2. Only one R0 fragment and four variants of the R2 fragment were detected. No differences were observed between the two time points with regard to the frequencies of the fragment variants. Mixed infections were uncommon. Our results demonstrate conservation of GLURP-R0 and limited polymorphic variation of GLURP-R2 in P. falciparum isolates from individuals living in Porto Velho. This is an important finding, as genetic polymorphisms in B and T-cell epitopes could have implications for the immunological properties of the antigen.
Resumo:
The humoral immune response plays an important role in the clearance of Giardia lamblia. However, our knowledge about the specific antigens of G. lamblia that induce a protective immune response is limited. The purpose of this study was to identify and characterise the immunogenic proteins of G. lamblia in a mouse model. We generated monoclonal antibodies (moAbs) specific to G. lamblia (1B10, 2C9.D11, 3C10.E5, 3D10, 5G8.B5, 5F4, 4C7, 3C5 and 3C6) by fusing splenocytes derived from infected mice. Most of these moAbs recognised a band of ± 71 kDa (5G8 protein) and this protein was also recognised by serum from the infected mice. We found that the moAbs recognised conformational epitopes of the 5G8 protein and that this antigen is expressed on the cell surface and inside trophozoites. Additionally, antibodies specific to the 5G8 protein induced strong agglutination (> 70-90%) of trophozoites. We have thus identified a highly immunogenic antigen of G. lamblia that is recognised by the immune system of infected mice. In summary, this study describes the identification and partial characterisation of an immunogenic protein of G. lamblia. Additionally, we generated a panel of moAbs specific for this protein that will be useful for the biochemical and immunological characterisation of this immunologically interesting Giardia molecule.
Resumo:
Lutzomyia longipalpis s.l. is the main vector of American visceral leishmaniasis (AVL) and occurs as a species complex. DNA samples from two Brazilian sympatric species that differ in pheromone and courtship song production were used to analyse molecular polymorphisms in an odorant-binding protein ( obp29 ) gene. OBPs are proteins related to olfaction and are involved in activities fundamental to survival, such as foraging, mating and choice of oviposition site. In this study, the marker obp29 was found to be highly polymorphic in Lu. longipalpis s.l. , with no fixed differences observed between the two species. A pairwise fixation index test indicated a moderate level of genetic differentiation between the samples analysed.
Resumo:
Transcripts similar to those that encode the nonstructural (NS) proteins NS3 and NS5 from flaviviruses were found in a salivary gland (SG) complementary DNA (cDNA) library from the cattle tick Rhipicephalus microplus.Tick extracts were cultured with cells to enable the isolation of viruses capable of replicating in cultured invertebrate and vertebrate cells. Deep sequencing of the viral RNA isolated from culture supernatants provided the complete coding sequences for the NS3 and NS5 proteins and their molecular characterisation confirmed similarity with the NS3 and NS5 sequences from other flaviviruses. Despite this similarity, phylogenetic analyses revealed that this potentially novel virus may be a highly divergent member of the genus Flavivirus. Interestingly, we detected the divergent NS3 and NS5 sequences in ticks collected from several dairy farms widely distributed throughout three regions of Brazil. This is the first report of flavivirus-like transcripts inR. microplus ticks. This novel virus is a potential arbovirus because it replicated in arthropod and mammalian cells; furthermore, it was detected in a cDNA library from tick SGs and therefore may be present in tick saliva. It is important to determine whether and by what means this potential virus is transmissible and to monitor the virus as a potential emerging tick-borne zoonotic pathogen.
Resumo:
Plasmodium vivax infects human erythrocytes through a major pathway that requires interaction between an apical parasite protein, the Duffy binding protein (PvDBP) and its receptor on reticulocytes, the Duffy antigen/receptor for chemokines (DARC). The importance of the interaction between PvDBP (region II, DBPII) and DARC to P. vivax infection has motivated our malaria research group at Oswaldo Cruz Foundation (state of Minas Gerais, Brazil) to conduct a number of immunoepidemiological studies to characterise the naturally acquired immunity to PvDBP in populations living in the Amazon rainforest. In this review, we provide an update on the immunology and molecular epidemiology of PvDBP in the Brazilian Amazon - an area of markedly unstable malaria transmission - and compare it with data from other parts of Latin America, as well as Asia and Oceania.
Resumo:
The hepatitis C virus (HCV) encodes approximately 10 different structural and non-structural proteins, including the envelope glycoprotein 2 (E2). HCV proteins, especially the envelope proteins, bind to cell receptors and can damage tissues. Endothelial inflammation is the most important determinant of fibrosis progression and, consequently, cirrhosis. The aim of this study was to evaluate and compare the inflammatory response of endothelial cells to two recombinant forms of the HCV E2 protein produced in different expression systems (Escherichia coli and Pichia pastoris). We observed the induction of cell death and the production of nitric oxide, hydrogen peroxide, interleukin-8 and vascular endothelial growth factor A in human umbilical vein endothelial cells (HUVECs) stimulated by the two recombinant E2 proteins. The E2-induced apoptosis of HUVECs was confirmed using the molecular marker PARP. The apoptosis rescue observed when the antioxidant N-acetylcysteine was used suggests that reactive oxygen species are involved in E2-induced apoptosis. We propose that these proteins are involved in the chronic inflammation caused by HCV.
Resumo:
Hepatitis C virus (HCV) envelope protein 2 (E2) is involved in viral binding to host cells. The aim of this work was to produce recombinant E2B and E2Y HCV proteins in Escherichia coli and Pichia pastoris, respectively, and to study their interactions with low-density lipoprotein receptor (LDLr) and CD81 in human umbilical vein endothelial cells (HUVEC) and the ECV304 bladder carcinoma cell line. To investigate the effects of human LDL and differences in protein structure (glycosylated or not) on binding efficiency, the recombinant proteins were either associated or not associated with lipoproteins before being assayed. The immunoreactivity of the recombinant proteins was analysed using pooled serum samples that were either positive or negative for hepatitis C. The cells were immunophenotyped by LDLr and CD81 using flow cytometry. Binding and binding inhibition assays were performed in the presence of LDL, foetal bovine serum (FCS) and specific antibodies. The results revealed that binding was reduced in the absence of FCS, but that the addition of human LDL rescued and increased binding capacity. In HUVEC cells, the use of antibodies to block LDLr led to a significant reduction in the binding of E2B and E2Y. CD81 antibodies did not affect E2B and E2Y binding. In ECV304 cells, blocking LDLr and CD81 produced similar effects, but they were not as marked as those that were observed in HUVEC cells. In conclusion, recombinant HCV E2 is dependent on LDL for its ability to bind to LDLr in HUVEC and ECV304 cells. These findings are relevant because E2 acts to anchor HCV to host cells; therefore, high blood levels of LDL could enhance viral infectivity in chronic hepatitis C patients.
Resumo:
A rapid decrease in parasitaemia remains the major goal for new antimalarial drugs and thus, in vivo models must provide precise results concerning parasitaemia modulation. Hydroxyethylamine comprise an important group of alkanolamine compounds that exhibit pharmacological properties as proteases inhibitors that has already been proposed as a new class of antimalarial drugs. Herein, it was tested the antimalarial property of new nine different hydroxyethylamine derivatives using the green fluorescent protein (GFP)-expressing Plasmodium bergheistrain. By comparing flow cytometry and microscopic analysis to evaluate parasitaemia recrudescence, it was observed that flow cytometry was a more sensitive methodology. The nine hydroxyethylamine derivatives were obtained by inserting one of the following radical in the para position: H, 4Cl, 4-Br, 4-F, 4-CH3, 4-OCH3, 4-NO2, 4-NH2 and 3-Br. The antimalarial test showed that the compound that received the methyl group (4-CH3) inhibited 70% of parasite growth. Our results suggest that GFP-transfected P. berghei is a useful tool to study the recrudescence of novel antimalarial drugs through parasitaemia examination by flow cytometry. Furthermore, it was demonstrated that the insertion of a methyl group at the para position of the sulfonamide ring appears to be critical for the antimalarial activity of this class of compounds.
Resumo:
The aim of this study was to evaluate an enzyme-linked immunoassay with recombinant rhoptry protein 2 (ELISA-rROP2) for its ability to detectToxoplasma gondii ROP2-specific IgG in samples from pregnant women. The study included 236 samples that were divided into groups according to serological screening profiles for toxoplasmosis: unexposed (n = 65), probable acute infection (n = 48), possible acute infection (n = 58) and exposed to the parasite (n = 65). When an indirect immunofluorescence assay forT. gondii-specific IgG was considered as a reference test, the ELISA-rROP2 had a sensitivity of 61.8%, specificity of 62.8%, predictive positive value of 76.6% and predictive negative value of 45.4% (p = 0.0002). The ELISA-rROP2 reacted with 62.5% of the samples from pregnant women with probable acute infection and 40% of the samples from pregnant women with previous exposure (p = 0.0180). Seropositivity was observed in 50/57 (87.7%) pregnant women with possible infection. The results underscored that T. gondii rROP2 is recognised by specific IgG antibodies in both the acute and chronic phases of toxoplasmosis acquired during pregnancy. However, the sensitivity of the ELISA-rROP2 was higher in the pregnant women with probable and possible acute infections and IgM reactivity.
Resumo:
The intracellular parasite Trypanosoma cruzi is the aetiological agent of Chagas disease, a public health concern with an increasing incidence rate. This increase is due, among other reasons, to the parasite’s drug resistance mechanisms, which require nicotinamide adenine dinucleotide (NAD+). Furthermore, this molecule is involved in metabolic and intracellular signalling processes necessary for the survival of T. cruzi throughout its life cycle. NAD+ biosynthesis is performed by de novo and salvage pathways, which converge on the step that is catalysed by the enzyme nicotinamide mononucleotide adenylyltransferase (NMNAT) (enzyme commission number: 2.7.7.1). The identification of the NMNAT of T. cruzi is important for the development of future therapeutic strategies to treat Chagas disease. In this study, a hypothetical open reading frame (ORF) for NMNAT was identified in the genome of T. cruzi. The corresponding putative protein was analysed by simulating structural models. The ORF was amplified from genomic DNA by polymerase chain reaction and was further used for the construction of a corresponding recombinant expression vector. The expressed recombinant protein was partially purified and its activity was evaluated using enzymatic assays. These results comprise the first identification of an NMNAT in T. cruzi using bioinformatics and experimental tools and hence represent the first step to understanding NAD+ metabolism in these parasites.
Resumo:
Leptospirosis is a zoonotic disease caused by pathogenic spirochetes of theLeptospira genus. Vaccination with bacterins has severe limitations. Here, we evaluated the N-terminal region of the leptospiral immunoglobulin-like B protein (LigBrep) as a vaccine candidate against leptospirosis using immunisation strategies based on DNA prime-protein boost, DNA vaccine, and subunit vaccine. Upon challenge with a virulent strain ofLeptospira interrogans, the prime-boost and DNA vaccine approaches induced significant protection in hamsters, as well as a specific IgG antibody response and sterilising immunity. Although vaccination with recombinant fragment of LigBrep also produced a strong antibody response, it was not immunoprotective. These results highlight the potential of LigBrep as a candidate antigen for an effective vaccine against leptospirosis and emphasise the use of the DNA prime-protein boost as an important strategy for vaccine development.