170 resultados para hair-plot
Resumo:
The increased availability of soil water is important for the management of non-irrigated orange orchards. The objective of this study was to evaluate the availability of soil water in a Haplorthox (Rhodic Ferralsol) under different tillage systems used for orchard plantation, mulch management and rootstocks in a "Pêra" orange orchard in northwest Paraná, Brazil. An experiment in a split-split-plot design was established in 2002, in an area cultivated with Brachiaria brizantha grass in which three tillage systems (no tillage, conventional tillage and strip-tillage) were used for orchard plantation. This grass was mowed twice a year between the rows, representing two mulch managements in the split plots (no mulching and mulching in the plant rows). The split-split-plots were represented by two rootstocks ("Rangpur" lime and "Cleopatra" mandarin). The soil water content in the plant rows was evaluated in the 0-20 cm layer in 2007 and at 0-20 and 20-40 cm in 2008-2009. The effect of soil tillage systems prior to implantation of orange orchards on soil water availability was less pronounced than mulching and the rootstocks. The soil water availability was lower when "Pêra" orange trees were grafted on "Cleopatra" mandarin than on "Rangpur" lime rootstocks. Mulching had a positive influence on soil water availability in the sandy surface layer (0-20 cm) and sandy clay loam subsurface (20-40 cm) of the soil in the spring. The production of B. brizantha between the rows and residue disposal in the plant rows as mulch increased water availability to the "Pêra" orange trees.
Resumo:
Rainfall in the semiarid region of Pernambuco is characterized by irregular distribution in time and space, which significantly hinders the rainfed agriculture in the region. This work aims to evaluate the temporal profile of soil moisture in the semiarid region of the Pernambuco State (Brazil) and the effect of different soil surface conditions on soil water content variation and the yield of rainfed beans. To monitor soil water content, five plots 4.5 m wide by 11 m long were installed in a Yellow Argisol (Ultisol). The following treatments were adopted in the experimental plots: natural vegetation, bean intercropped with cactus, beans planted down the slope, beans planted along contour lines with mulch and rock barriers, and bare soil. In each plot, eight PVC access tubes were installed for monitoring the soil water content profile at depths of 0.20 and 0.40 m using a neutron probe device. The surface condition significantly influenced the soil water content variation, both in the dry and rainy seasons. The use of mulch, associated with rock barriers, provided higher soil water content levels than the other treatments and increased the rainfed beans production.
Microbial biomass and soil chemical properties under different land use systems in northeastern Pará
Resumo:
The increase in agricultural production in the Brazilian Amazon region is mostly a result of the agricultural frontier expansion, into areas previously influenced by humans or of native vegetation. At the same time, burning is still used to clear areas in small-scale agricultural systems, leading to a loss of the soil productive capacity shortly after, forcing the opening of new areas. This study had the objective of evaluating the effect of soil preparation methods that involve plant residue shredding, left on the surface or incorporated to the soil, with or without chemical fertilization, on the soil chemical and biological properties. The experiment was conducted in 1995, in an experimental field of Yellow Latosol (Oxisol) of the Embrapa Amazônia Oriental, northeastern Pará (Brazil). The experiment was arranged in randomized blocks, in a 2x6 factorial design, with two management systems and six treatments evaluated twice. The management systems consisted of rice (Oriza sativa), followed by cowpea (Vigna unguiculata) with manioc (Manihot esculenta). In the first system the crops were planted in two consecutive cycles, followed by a three-year fallow period (natural regrowth); the second system consisted of one cultivation cycle and was left fallow for three years. The following treatments were applied to the secondary forest vegetation: slash and burn, fertilized with NPK (Q+NPK); slash and burn, without fertilizer NPK (Q-NPK); cutting and shredding, leaving the residues on the soil surface, fertilized with NPK (C+NPK); cutting and shredding, leaving residues on the soil surface, without fertilizer (C-NPK); cutting and shredding, with residue incorporation and fertilized with NPK (I+NPK); cutting and shredding, with residue incorporation and without NPK fertilizer (I-NPK). The soil was sampled in the rainier season (April 2006) and in the drier season (September 2006), in the 0-0.1 m layer. From each plot, 10 simple samples were collected in order to generate a composite sample. In the more intensive management system the contents of microbial C (Cmic) and microbial N (Nmic) were higher, while the C (Corg) level was higher in the less intensive system. The treatments with highest Cmic and Nmic levels were those with cutting, shredding and distribution of biomass on the soil surface. Under both management systems, the chemical characteristics were in ranges that classify the soil as little fertile, although P and K (in the rainy season) were higher in the less intensive management system.
Resumo:
A method for determining soil hydraulic properties of a weathered tropical soil (Oxisol) using a medium-sized column with undisturbed soil is presented. The method was used to determine fitting parameters of the water retention curve and hydraulic conductivity functions of a soil column in support of a pesticide leaching study. The soil column was extracted from a continuously-used research plot in Central Oahu (Hawaii, USA) and its internal structure was examined by computed tomography. The experiment was based on tension infiltration into the soil column with free outflow at the lower end. Water flow through the soil core was mathematically modeled using a computer code that numerically solves the one-dimensional Richards equation. Measured soil hydraulic parameters were used for direct simulation, and the retention and soil hydraulic parameters were estimated by inverse modeling. The inverse modeling produced very good agreement between model outputs and measured flux and pressure head data for the relatively homogeneous column. The moisture content at a given pressure from the retention curve measured directly in small soil samples was lower than that obtained through parameter optimization based on experiments using a medium-sized undisturbed soil column.
Resumo:
This study evaluated the effect of hairy vetch (Vicia villosa Roth) as cover crop on maize nutrition and yield under no tillage using isotope techniques. For this purpose, three experiments were carried out: 1) quantification of biological nitrogen fixation (BNF) in hairy vetch; 2) estimation of the N release rate from hairy vetch residues on the soil surface; 3) quantification of 15N recovery by maize from labeled hairy vetch under three rates of mineral N fertilization. This two-year field experiment was conducted on a sandy Acrisol (FAO soil classification) or Argissolo Vermelho distrófico arênico (Brazilian Soil Classification), at a mean annual temperature of 18 ºC and mean annual rainfall of 1686 mm. The experiment was arranged in a double split-plot factorial design with three replications. Two levels of hairy vetch residue (50 and 100 % of the aboveground biomass production) were distributed on the surface of the main plots (5 x 12 m). Maize in the sub-plots (5 x 4 m) was fertilized with three N rates (0, 60, and 120 kg ha-1 N), with urea as N source. The hairy vetch-derived N recovered by maize was evaluated in microplots (1.8 x 2.2 m). The BFN of hairy vetch was on average 72.4 %, which represents an annual input of 130 kg ha-1 of atmospheric N. The N release from hairy vetch residues was fast, with a release of about 90 % of total N within the first four weeks after cover crop management and soil residue application. The recovery of hairy vetch 15N by maize was low, with an average of 12.3 % at harvest. Although hairy vetch was not directly the main source of maize N nutrition, the crop yield reached 8.2 Mg ha-1, without mineral fertilization. There was an apparent synergism between hairy vetch residue application and the mineral N fertilization rate of 60 kg ha-1, confirming the benefits of the combination of organic and inorganic N sources for maize under no tillage.
Resumo:
Peats are an important reserve of humified carbon in terrestrial ecosystems. The interest in the use of humic substances as plant growth promoters is continuously increasing. The objective of this study was to evaluate the bioactivity of alkaline soluble humic substances (HS), humic (HA) and fulvic acids (FA) isolated from peats with different decomposition stages of organic matter (sapric, fibric and hemic) in the Serra do Espinhaço Meridional, state of Minas Gerais. Dose-response curves were established for the number of lateral roots growing from the main plant axis of tomato seedlings. The bioactivity of HA was greatest (highest response in lateral roots at lowest concentration) while FA did not intensify root growth. Both HS and HA stimulated root hair formation. At low concentrations, HS and HA induced root hair formation near the root cap, a typical hormonal imbalance effect in plants. Transgenic tomato with reporter gene DR5::GUS allowed the observation that the auxin-related signalling pathway was involved in root growth promotion by HA.
Resumo:
The use of organic-mineral fertilizer produced by the manufacturing industry of lysine and threonine amino acids can improve the fertility of tropical soils. The objective of this study was to evaluate the influence of different doses of the organic-mineral fertilizer named Ajifer L-14 on chemical properties and on the response with increased production of a forage on a Red Latosol in the northwestern region of São Paulo State, Brazil. A randomized block design was used with seven treatments and four replications. The treatments consisted of: T1- control (without application of Ajifer L-14); T2- control (natural vegetation); T3- mineral fertilization according to crop requirements and soil analysis (application of 1.35 kg plot-1 of urea, 2.20 single superphosphate, and 0.51 KCl, corresponding to 60 of N, 40 P2O5 and 30 kg ha-1 of K2O); T4- fertilization with Ajifer L-14 according to the recommendation resulting from the soil chemical analysis (40 L plot-1, corresponding to 60 kg ha-1 N); T5- fertilization with Ajifer L-14, at a rate of 150 % of the recommended values (60 L plot-1, corresponding to 90 kg ha-1 N); T6- fertilization with Ajifer L-14 at a rate of 50 % of the recommended values (20 L plot-1, corresponding to 30 kg ha-1 N); T7- fertilization with Ajifer L-14 at a rate of 125 % of the recommended values (50 L plot-1, corresponding to 75 kg ha-1 N); T8- fertilization with Ajifer L-14 at a rate of 75 % of the recommended values (30 L plot-1, corresponding to 45 kg ha-1 N). The following soil chemical properties were evaluated (layers 0.0-0.1 and 0.1-0.2 m): P, organic matter, pH, K+, Ca2+, Mg2+, cation exchange capacity, potential acidity, and base saturation. The application of this organic-mineral fertilizer does not influence the soil chemical properties. Regression analysis indicated a polynomial relationship between the application rates of organic-mineral fertilizer and the production of dry matter and crude protein of Bracharia Brizantha.
Resumo:
Studies of soil-water dynamics using toposequences are essential to improve the understanding of soil-water-vegetation relationships. This study assessed the hydro-physical and morphological characteristics of soils of Atlantic Rainforest in the Parque Estadual de Carlos Botelho, state of São Paulo, Brazil. The study area of 10.24 ha (320 x 320 m) was covered by dense tropical rainforest (Atlantic Rainforest). Based on soil maps and topographic maps of the area, a representative transect of the soil in this plot was chosen and five soil trenches were opened to determine morphological properties. To evaluate the soil hydro-physical functioning, soil particle size distribution, bulk density (r), particle density (r s), soil water retention curves (SWRC), field saturated hydraulic conductivity (Ks), macroporosity (macro), and microporosity (micro) and total porosity (TP) were determined. Undisturbed samples were collected for micromorphometric image analysis, to determine pore size, shape, and connectivity. The soils in the study area were predominantly Inceptisols, and secondly Entisols and Epiaquic Haplustult. In the soil hydro-physical characterization of the selected transect, a change was observed in Ks between the surface and subsurface layers, from high/intermediate to intermediate/low permeability. This variation in soil-water dynamics was also observed in the SWRC, with higher water retention in the subsurface horizons. The soil hydro-physical behavior was influenced by the morphogenetic characteristics of the soils.
Resumo:
Lychnophora pohlii Sch. Bip. (Asteraceae), known as "Arnica mineira", is widely used in folk medicine and very abundant in the altitude vegetation of rocky grassland. The aim of this work was to study the density of this species and its relationship with soil parameters in rocky grassland in Diamantina, in the Upper Jequitinhonha region, Minas Gerais. Ten contiguous 20 x 50 m plots were marked (total sampled area 10,000 m²) on the campus Juscelino Kubitschek of the Federal University of Jequitinhonha and Mucuri Valleys (UFVJM). The plants in these plots were evaluated for frequency, dominance and density. The relationship between the density of this species with nine soil physical and chemical properties was analyzed by means of canonical correspondence analysis (CCA). The highest plant abundance (I) of the species Lychnophora pohlii Sch. Bip. was found in the vegetation sampling areas: plot 6 with 255 plants, plot 7 with 173, plot 8 with 189, plot 9 with 159, and plot 1 with 151 plants. In these areas, the floristic soil characteristics were similar, resulting in spatial proximity in the ACC diagrams. The density of Lychnophora pohlii was higher in plots with higher pH, P-rem and base saturation, the variables most strongly correlated with the first axis of canonical correspondence analysis.
Resumo:
The use of cultivars with a higher yield potential and the adoption of new technology have achieved high grain yields in common bean, which probably changed the demand for nutrients in this crop. However, there is almost no information about the periods of the cycle in which nutrients are most demanded at which quantities by the main cultivars. The objective of this study was to evaluate the macronutrient extraction and exportation by the common bean cultivars Pérola and IAC Alvorada, under different levels of NPK fertilization, on a dystroferric Red Nitosol, in Botucatu, São Paulo State, Brazil. The experiment was arranged in a randomized complete block (split plot) design with four replications. The plots consisted of six treatments based on a 2 x 3 factorial model, represented by two cultivars and three NPK levels (PD0 - 'Pérola' without fertilization, PD1 - 'Pérola' with 50 % of recommended fertilization, PD2 - 'Pérola' with 100 % of recommended fertilization, AD0 - 'IAC Alvorada' without fertilization, AD1 - 'IAC Alvorada' with 50 % of recommended fertilization, and AD2 - 'IAC Alvorada' with 100 % of recommended fertilization) and subplots sampled seven times during the cycle. At higher levels of NPK fertilization, the grain yield and macronutrient extraction and exportation of both cultivars were higher, but without statistical differences. Macronutrient absorption was higher in the treatments with 100 % of recommended NPK fertilization (average amounts per hectare: 140 kg N, 16.5 kg P, 120 kg K, 69 kg Ca, 17.9 kg Mg, and 16.3 kg S). Regardless of the treatment, the demand for N, P, K, Ca, and Mg was highest from 45 to 55 days after emergence (DAE), i.e., in the R7 stage (pod formation), while the highest S absorption rates were concentrated between 55 and 65 DAE. More than 70 % of P, between 58 and 69 % of N, 40 and 52 % of S, 40 and 48 % of K, and 35 and 45 % of Mg absorbed during the cycle was exported with grains, whereas less than 15 % of Ca was exported.
Resumo:
Where the level of agricultural technology is higher, common bean cultivars with a higher yield potential possibly require greater amounts of micronutrients. In Brazil however, there is a lack of information about the micronutrient extraction and exportation by the main grown cultivars. The objective of this study was to evaluate micronutrient (B, Cu, Fe, Mn, and Zn) extraction and exportation by common bean cultivars Pérola and IAC Alvorada, under different levels of NPK fertilization, on a dystroferric Red Nitosol, in Botucatu, São Paulo State, Brazil. The experiment was arranged in a randomized complete block (split plot) design with four replications. The plots consisted of six treatments based on a 2 x 3 factorial model, represented by two cultivars and three NPK levels (PD0 - 'Pérola' without fertilization, PD1 - 'Pérola' with 50 % of recommended fertilization, PD2 - 'Pérola' with 100 % of recommended fertilization, AD0 - 'IAC Alvorada' without fertilization, AD1 - 'IAC Alvorada' with 50 % of recommended fertilization, and AD2 - 'IAC Alvorada' with 100 % of recommended fertilization) and subplots sampled seven times during the cycle. Higher levels of NPK fertilization increased micronutrient extraction by both cultivars, and treatments with 100 % of recommended NPK fertilization extracted on average 167 g B, 58 g Cu, 1,405 g Fe, 1,213 g Mn and 211 g Zn per hectare. Regardless of the treatment, the highest demand period for B, Cu, Fe, Mn and Zn in both cultivars occurred at the R7 stage (pod formation), i.e. 42 to 55 days after emergence (DAE). The amount of B, Cu, Fe, Mn and Zn exported depended mainly on the level of NPK fertilization used, with values per hectare ranging from 38 to 90 g of B, 12 to 26 g of Cu, 222 to 568 g of Fe 234 to 467 g of Mn, and 40 to 96 g of Zn.
Resumo:
Soil management influences the chemical and physical properties of soil. Chemical conditions have been thoroughly studied, while the role of soil physical conditions regarding crop yield has been neglected. This study aimed to analyze the wheat yield and its relationship with physical properties of an Oxisol under no-tillage (NT). The study was carried out between 2010 and 2011, in Reserva do Iguaçu, State of Paraná, Brazil, on the Campo Bonito farm, after 25 years of NT management. Based on harvest maps of barley (2006), wheat (2007) and maize (2009) of a plot (150 ha), zones with higher and lower yield potential (Z1 and Z2, respectively) were identified. Sampling grids with 16 units (50 x 50 m) and three sampling points per unit were established. The wheat grain yield (GY) and water infiltration capacity (WIC) were evaluated in 2010. Soil samples with disturbed and undisturbed structure were collected from the 0.00-0.10 and 0.10-0.20 m layers. The former were used to determine soil organic carbon (Corg) levels and the latter to determine soil bulk density (BD), total porosity (TP), macroporosity (Mac), and microporosity (Mic). Soil penetration resistance (PR) and water content (SWC) were also evaluated. The wheat GY of the whole plot was close to the regional average and the yield between the zones differed significantly, i.e. 22 % higher in Z1 than in Z2. No significant variation in Mic was observed between zones, but Z1 had higher Corg levels, SWC, TP and Mac and lower BD than Z2 in both soil layers, as well as a lower PR than Z2 in the 0.00-0.10 m layer. Therefore, soil physical conditions were more restrictive in Z2, in agreement with wheat yield and zone yield potential defined a priori, based on the harvest maps. Soil WIC in Z1 was significantly higher (30 %) than in Z2, in agreement with the results of TP and Mac which were also higher in Z1 in both soil layers. The correlation analysis of data of the two layers showed a positive relationship between wheat GY and the soil properties TP, SWC and WIC.
Resumo:
The use of cover crops has been suggested as an effective method to maintain and/or increase the organic matter content, while maintaining and/or enhancing the soil physical, chemical and biological properties. The fertility of Cerrado soils is low and, consequently, phosphorus levels as well. Phosphorus is required at every metabolic stage of the plant, as it plays a role in the processes of protein and energy synthesis and influences the photosynthetic process. This study evaluated the influence of cover crops and phosphorus rates on soil chemical and biological properties after two consecutive years of common bean. The study analyzed an Oxisol in Selvíria (Mato Grosso do Sul, Brazil), in a randomized block, split plot design, in a total of 24 treatments with three replications. The plot treatments consisted of cover crops (millet, pigeon pea, crotalaria, velvet bean, millet + pigeon pea, millet + crotalaria, and millet + velvet bean) and one plot was left fallow. The subplots were represented by phosphorus rates applied as monoammonium phosphate (0, 60 and 90 kg ha-1 P2O5). In August 2011, the soil chemical properties were evaluated (pH, organic matter, phosphorus, potential acidity, cation exchange capacity, and base saturation) as well as biological variables (carbon of released CO2, microbial carbon, metabolic quotient and microbial quotient). After two years of cover crops in rotation with common bean, the cover crop biomass had not altered the soil chemical properties and barely influenced the microbial activity. The biomass production of millet and crotalaria (monoculture or intercropped) was highest. The biological variables were sensitive and responded to increasing phosphorus rates with increases in microbial carbon and reduction of the metabolic quotient.
Resumo:
The physical properties and fertility of the soil are important factors in the formation and establishment of pasture. Changes in physical properties affect the movement of water, air, nutrients and roots, which, in turn, affect the productivity and longevity of pastures. The objective of this study was to evaluate the physical properties of the soil and the dry matter yield of a pasture with signalgrass cv. Basilisk (Brachiaria decumbens cv. Basilisk), fertilized with increasing nitrogen doses (N), on a dystrophic Red-Yellow Latosol. The experiment was conducted on the Fazenda Rio Manso of the Universidade Federal dos Vales do Jequitinhonha e Mucuri, in Couto de Magalhães de Minas, State of Minas Gerais, Brazil. To evaluate the annual forage yield, a split plot scheme in a randomized block design with four replications was used, with N doses (0, 50, 100, 150, and 200 kg/ha/year) in the plots and growing seasons (first and second) in the subplots. For soil evaluation, a split plot scheme was used with N doses (0, 25, 50, 75 and 100 kg/ha/cut) in the plots and three sampling times (prior to the experiment, at the end of the first growing season and at the end of the second growing season) in the subplots in a randomized block design with four replications. This analysis was performed separately at two soil depths (0-3 and 10-13 cm). Forage samples were analyzed for the annual dry matter yield (DMY), and soil samples were analyzed for pre-consolidation pressure (σp), initial soil bulk density (Bd), total pore volume (TPV) and void index (Vd). Higher nitrogen doses increased the dry matter yield of signalgrass pasture and the pre-consolidation pressure of the soil. The total pore volume and void index decreased, and the initial soil bulk density increased, though without promoting soil compaction.
Resumo:
The grain yield of upland rice under no-tillage has been unsatisfactory and one reason could be the nitrate/ammonium balance in the soil. Cover crops and nitrogen fertilization can be used to change the nitrate/ammonium relation in the soil and improve conditions for the development of upland rice in the no-tillage (NT) system. The aim was to study the effect of cover crops and nitrogen sources on grain yield of upland rice under no tillage. The study was carried out on the Fazenda Experimental Lageado, in Botucatu, State of São Paulo, Brazil, in an Oxisol area under no-tillage for six years. The experiment was arranged in a randomized block split-plot design with four replications. The plots consisted of six cover crop species (Brachiaria brizantha, B. decumbens, B. humidicola, B. ruziziensis, Pennisetum americanum, and Crotalaria spectabilis) and the split-plots of seven forms of N fertilizer management. Millet is the best cover crop to precede upland rice under NT. The best form of N application, as nitrate, is in split rates or total rate at topdressing or an ammonium source with or without a nitrification inhibitor, in split doses. When the cover crops C. spectabilis, B. brizantha, B. decumbens, B. humidicola, and B. ruziziensis preceded rice, they induced the highest grain yield when rice was fertilized with N as ammonium sulfate source + nitrification inhibitor in split rates or total dose at topdressing.