107 resultados para drug-drug interactions (DDI)
Resumo:
Only one drug is currently available for the treatment and control of schistosomiasis and the increasing risk of selecting strains of schistosome that are resistant to praziquantel means that the development of new drugs is urgent. With this objective we have chosen to target the enzymes modifying histones and in particular the histone acetyltransferases and histone deacetylases (HDAC). Inhibitors of HDACs (HDACi) are under intense study as potential anti-cancer drugs and act via the induction of cell cycle arrest and/or apoptosis. Schistosomes like other parasites can be considered as similar to tumours in that they maintain an intense metabolic activity and rate of cell division that is outside the control of the host. We have shown that HDACi can induce apoptosis and death of schistosomes maintained in culture and have set up a consortium (Schistosome Epigenetics: Targets, Regulation, New Drugs) funded by the European Commission with the aim of developing inhibitors specific for schistosome histone modifying enzymes as novel lead compounds for drug development.
Resumo:
The performance of the nitrate reductase assay (NRA) was compared with the proportion method (PM) on Lowenstein-Jensen medium and the BACTEC MGIT960 assay under routine conditions using 160 clinical isolates of Mycobacterium tuberculosis with a high proportion of resistant strains. The mean time to obtain results was 8.8 days and the overall agreements between NRA and PM and NRA and M960 were 95% and 94%, respectively. NRA was easy to perform and represents a useful tool for the rapid screening of drug-resistant M. tuberculosis strains in low-resource countries.
Resumo:
Malaria remains a major world health problem following the emergence and spread of Plasmodium falciparum that is resistant to the majority of antimalarial drugs. This problem has since been aggravated by a decreased sensitivity of Plasmodium vivax to chloroquine. This review discusses strategies for evaluating the antimalarial activity of new compounds in vitro and in animal models ranging from conventional tests to the latest high-throughput screening technologies. Antimalarial discovery approaches include the following: the discovery of antimalarials from natural sources, chemical modifications of existing antimalarials, the development of hybrid compounds, testing of commercially available drugs that have been approved for human use for other diseases and molecular modelling using virtual screening technology and docking. Using these approaches, thousands of new drugs with known molecular specificity and active against P. falciparum have been selected. The inhibition of haemozoin formation in vitro, an indirect test that does not require P. falciparum cultures, has been described and this test is believed to improve antimalarial drug discovery. Clinical trials conducted with new funds from international agencies and the participation of several industries committed to the eradication of malaria should accelerate the discovery of drugs that are as effective as artemisinin derivatives, thus providing new hope for the control of malaria.
Resumo:
The resistance of 139 Mycobacterium tuberculosis (MTB) isolates from the city of Monterrey, Northeast Mexico, to first and second-line anti-TB drugs was analysed. A total of 73 isolates were susceptible and 66 were resistant to anti-TB drugs. Monoresistance to streptomycin, isoniazid (INH) and ethambutol was observed in 29 cases. Resistance to INH was found in 52 cases and in 29 cases INH resistance was combined with resistance to two or three drugs. A total of 24 isolates were multidrug-resistant (MDR) resistant to at least INH and rifampicin and 11 MDR cases were resistant to five drugs. The proportion of MDR-TB among new TB cases in our target population was 0.72% (1/139 cases). The proportion of MDR-TB among previously treated cases was 25.18% (35/139 cases). The 13 polyresistant and 24 MDR isolates were assayed against the following seven second-line drugs: amikacin (AMK), kanamycin (KAN), capreomycin (CAP), clofazimine (CLF), ethionamide (ETH), ofloxacin (OFL) and cycloserine (CLS). Resistance to CLF, OFL or CLS was not observed. Resistance was detected to ETH (10.80%) and to AMK (2.70%), KAN (2.70%) and CAP (2.70%). One isolate of MDR with primary resistance was also resistant to three second-line drugs. Monterrey has a high prevalence of MDR-TB among previously treated cases and extensively drug-resistant-MTB strains may soon appear.
Resumo:
The prevalence of occult hepatitis B virus (HBV) infection was investigated in 149 hepatitis B surface antigen (HBsAg) negative injecting drug users (IDUs) in the Central-West Region of Brazil. Of these individuals, 19 were positive for HBV DNA, resulting in an occult HBV infection prevalence of 12.7% (19/149); six of these 19 individuals had anti-HBV core and/or anti-HBV surface antibodies and 13 were negative for HBV markers. All IDUs with occult hepatitis B reported sexual and/or parenteral risk behaviours. All HBV DNA-positive samples were successfully genotyped. Genotype D was the most common (17/19), followed by genotype A (2/19). These findings reveal a high prevalence of occult HBV infection and the predominance of genotype D among IDUs in Brazil's Central-West Region.
Resumo:
The presence of transmitted human immunodeficiency virus (HIV)-1 drug-resistance (TDR) at the time of antiretroviral therapy initiation is associated with failure to achieve viral load (VL) suppression. Here, we report TDR surveillance in a specific population of men who have sex with men (MSM) in Belo Horizonte, Brazil. In this study, the rate of TDR was evaluated in 64 HIV-infected individuals from a cohort of MSM between 1996-June 2012. Fifty-four percent had a documented recent HIV infection, with a seroconversion time of less than 12 months. The median CD4+T lymphocyte count and VL were 531 cells/mm3and 17,746 copies/mL, respectively. Considering the surveillance drug resistance mutation criteria, nine (14.1%) patients presented TDR, of which three (4.7%), five (7.8%) and four (6.2%) had protease inhibitors, resistant against nucleos(t)ide transcriptase inhibitors and against non-nucleoside reverse-transcriptase inhibitors mutations, respectively. Two of the patients had multi-drug-resistant HIV-1. The most prevalent viral subtype was B (44, 68.8%), followed by subtype F (11, 17.2%). This study shows that TDR may vary according to the population studied and it may be higher in clusters of MSM.
Resumo:
Megazol (7) is a 5-nitroimidazole that is highly active against Trypanosoma cruzi and Trypanosoma brucei, as well as drug-resistant forms of trypanosomiasis. Compound 7 is not used clinically due to its mutagenic and genotoxic properties, but has been largely used as a lead compound. Here, we compared the activity of 7 with its 4H-1,2,4-triazole bioisostere (8) in bloodstream forms of T. brucei and T. cruzi and evaluated their activation by T. brucei type I nitroreductase (TbNTR) enzyme. We also analysed the cytotoxic and genotoxic effects of these compounds in whole human blood using Comet and fluorescein diacetate/ethidium bromide assays. Although the only difference between 7 and 8 is the substitution of sulphur (in the thiadiazole in 7) for nitrogen (in the triazole in 8), the results indicated that 8 had poorer antiparasitic activity than 7 and was not genotoxic, whereas 7 presented this effect. The determination of Vmax indicated that although 8 was metabolised more rapidly than 7, it bounds to the TbNTR with better affinity, resulting in equivalent kcat/KM values. Docking assays of 7 and 8 performed within the active site of a homology model of the TbNTR indicating that 8 had greater affinity than 7.
Resumo:
This opinion piece presents an approach to standardisation of an important aspect of Chagas disease drug discovery and development: selecting Trypanosoma cruzi strains for in vitro screening. We discuss the rationale for strain selection representing T. cruzi diversity and provide recommendations on the preferred parasite stage for drug discovery, T. cruzi discrete typing units to include in the panel of strains and the number of strains/clones for primary screens and lead compounds. We also consider experimental approaches for in vitro drug assays. The Figure illustrates the current Chagas disease drug-discovery and development landscape.
Resumo:
Drug-resistant tuberculosis (TB) is a growing global threat. Approximately 450,000 people developed multidrug-resistant TB worldwide in 2012 and an estimated 170,000 people died from the disease. This paper describes the sociodemographic, clinical-epidemiological and bacteriological aspects of TB and correlates these features with the distribution of anti-TB drug resistance. Mycobacterium tuberculosis (MT) cultures and drug susceptibility testing were performed according to the BACTEC MGIT 960 method. The results demonstrated that MT strains from individuals who received treatment for TB and people who were infected with human immunodeficiency virus were more resistant to TB drugs compared to other individuals (p < 0.05). Approximately half of the individuals received supervised treatment, but most drug-resistant cases were positive for pulmonary TB and exhibited positive acid-fast bacilli smears, which are complicating factors for TB control programs. Primary healthcare is the ideal level for early disease detection, but tertiary healthcare is the most common entry point for patients into the system. These factors require special attention from healthcare managers and professionals to effectively control and monitor the spread of TB drug-resistant cases.
Resumo:
Reverse transcriptase (RT) is a multifunctional enzyme in the human immunodeficiency virus (HIV)-1 life cycle and represents a primary target for drug discovery efforts against HIV-1 infection. Two classes of RT inhibitors, the nucleoside RT inhibitors (NRTIs) and the nonnucleoside transcriptase inhibitors are prominently used in the highly active antiretroviral therapy in combination with other anti-HIV drugs. However, the rapid emergence of drug-resistant viral strains has limited the successful rate of the anti-HIV agents. Computational methods are a significant part of the drug design process and indispensable to study drug resistance. In this review, recent advances in computer-aided drug design for the rational design of new compounds against HIV-1 RT using methods such as molecular docking, molecular dynamics, free energy calculations, quantitative structure-activity relationships, pharmacophore modelling and absorption, distribution, metabolism, excretion and toxicity prediction are discussed. Successful applications of these methodologies are also highlighted.
Resumo:
Developing a fast, inexpensive, and specific test that reflects the mutations present in Mycobacterium tuberculosis isolates according to geographic region is the main challenge for drug-resistant tuberculosis (TB) control. The objective of this study was to develop a molecular platform to make a rapid diagnosis of multidrug-resistant (MDR) and extensively drug-resistant TB based on single nucleotide polymorphism (SNP) mutations present in therpoB, katG, inhA,ahpC, and gyrA genes from Colombian M. tuberculosis isolates. The amplification and sequencing of each target gene was performed. Capture oligonucleotides, which were tested before being used with isolates to assess the performance, were designed for wild type and mutated codons, and the platform was standardised based on the reverse hybridisation principle. This method was tested on DNA samples extracted from clinical isolates from 160 Colombian patients who were previously phenotypically and genotypically characterised as having susceptible or MDR M. tuberculosis. For our method, the kappa index of the sequencing results was 0,966, 0,825, 0,766, 0,740, and 0,625 forrpoB, katG, inhA,ahpC, and gyrA, respectively. Sensitivity and specificity were ranked between 90-100% compared with those of phenotypic drug susceptibility testing. Our assay helps to pave the way for implementation locally and for specifically adapted methods that can simultaneously detect drug resistance mutations to first and second-line drugs within a few hours.
Resumo:
Mycobacterium tuberculosis (Mtb) has acquired resistance and consequently the antibiotic therapeutic options available against this microorganism are limited. In this scenario, the use of usnic acid (UA), a natural compound, encapsulated into liposomes is proposed as a new approach in multidrug-resistant tuberculosis (MDR-TB) therapy. Thus the aim of this study was to evaluate the effect of the encapsulation of UA into liposomes, as well as its combination with antituberculous agents such as rifampicin (RIF) and isoniazid (INH) against MDR-TB clinical isolates. The in vitro antimycobacterial activity of UA-loaded liposomes (UA-Lipo) against MDR-TB was assessed by the microdilution method. The in vitro interaction of UA with antituberculous agents was carried out using checkerboard method. Minimal inhibitory concentration values were 31.25 and 0.98 µg/mL for UA and UA-Lipo, respectively. The results exhibited a synergistic interaction between RIF and UA [fractional inhibitory concentration index (FICI) = 0.31] or UA-Lipo (FICI = 0.28). Regarding INH, the combination of UA or UA-Lipo revealed no marked effect (FICI = 1.30-2.50). The UA-Lipo may be used as a dosage form to improve the antimycobacterial activity of RIF, a first-line drug for the treatment of infections caused by Mtb.
Resumo:
Objective: Identifying the main causes for underreporting of Adverse Drug Reaction (ADR) by health professionals. Method: A systematic review carried out in the following databases: LILACS, PAHO, SciELO, EMBASE and PubMed in the period between 1992 and 2012. Descriptors were used in the search for articles, and the identified causes of underreporting were analyzed according to the classification of Inman. Results: In total, were identified 149 articles, among which 29 were selected. Most studies were carried out in hospitals (24/29) for physicians (22/29), and pharmacists (10/29). The main causes related to underreporting were ignorance (24/29), insecurity (24/29) and indifference (23/29). Conclusion: The data show the eighth sin in underreporting, which is the lack of training in pharmacovigilance. Therefore, continuing education can increase adherence of professionals to the service and improve knowledge and communication of risks due to drug use.
Resumo:
A pregnant adolescent’s vulnerability increases when she is a victim of intrafamilial violence and drug addiction, which cause physical and biopsychosocial damage to the mother and her baby. Objective Present and analyze the case of an adolescent who is addicted to drugs, pregnant and the victim of lifelong intrafamilial violence. Method A case study based on a semi-structured interview conducted in the Obstetrics Emergency Unit at the Teaching Hospital of the University of São Paulo. The data were interpreted and analyzed using Content Analysis. Results intrafamilial violence experienced at the beginning of the adolescent’s early relationships seriously affected her emotional maturity, triggering the development of psychopathologies and leaving her more susceptible to the use and abuse of alcohol and other drugs. The adolescent is repeating her history with her daughter, reproducing the cycle of violence. Conclusion Adolescent pregnancy combined with intrafamilial violence and drug addiction and multiplies the adolescent’s psychosocial vulnerability increased the adolescent’s vulnerability.