132 resultados para Environmental Stresses
Resumo:
The objective of this work was to evaluate the total and thermotolerant coliform densities in the oyster culture water of Cananeia, SP, Brazil, correlating these densities with environmental variables and tidal variations. Superficial water samples were collected in two tide conditions (spring and neap) from three areas of Cananéia municipality (Mandira, Itapitangui and Cooperostra). The three studied areas showed good conditions for the culture regarding coliform densities. The two tidal conditions differed significantly as to total coliform concentration; however, the same procedure was not performed for thermotolerant coliforms. No correlation was observed between water temperature, pH, and concentrations of total and thermotolerant coliforms. Coliform density was positively correlated with rainfall and negatively correlated with salinity. Spring and neap tides differed significantly as to coliform number. Simple diagnosis of environmental conditions of the crop fields is insufficient to assess water quality of shellfish cultivation. A continuous monitoring program of planted areas is necessary both for the assessment of water quality potential for marine culture and for ensuring safe consumption of seafood, besides constituting an important tool to understand the relationships between contamination and the involved environmental variables.
Resumo:
The objective of this work was to list potential candidate bee species for environmental risk assessment (ERA) of genetically modified (GM) cotton and to identify the most suited bee species for this task, according to their abundance and geographical distribution. Field inventories of bee on cotton flowers were performed in the states of Bahia and Mato Grosso, and in Distrito Federal, Brazil. During a 344 hour sampling, 3,470 bees from 74 species were recovered, at eight sites. Apis mellifera dominated the bee assemblages at all sites. Sampling at two sites that received no insecticide application was sufficient to identify the three most common and geographically widespread wild species: Paratrigona lineata, Melissoptila cnecomola, and Trigona spinipes, which could be useful indicators of pollination services in the ERA. Indirect ordination of common wild species revealed that insecticides reduced the number of native bee species and that interannual variation in bee assemblages may be low. Accumulation curves of rare bee species did not saturate, as expected in tropical and megadiverse regions. Species-based approaches are limited to analyze negative impacts of GM cotton on pollinator biological diversity. The accumulation rate of rare bee species, however, may be useful for evaluating possible negative effects of GM cotton on bee diversity.
Resumo:
The chelating agent EDTA (ethylenediaminetetraacetic acid) is a compound of massive use world wide with household and industrial applications, being one of the anthropogenic compounds with highest concentrations in inland European waters. In this review, the applications of EDTA and its behavior once it has been released into the environment are described. At a laboratory scale, degradation of EDTA has been achieved; however, in natural environments studies detect poor biodegradability. It is concluded that EDTA behaves as a persistent substance in the environment and that its contribution to heavy metals bioavailability and remobilization processes in the environment is a major concern.
Resumo:
Ultra-trace amounts of Cu(II) were separated and preconcentrated by solid phase extraction on octadecyl-bonded silica membrane disks modified with a new Schiff,s base (Bis- (2-Hydroxyacetophenone) -2,2-dimethyl-1,3-propanediimine) (SBTD) followed by elution and inductively coupled plasma atomic emission spectrometric detection. The method was applied as a separation and detection method for copper(II) in environmental and biological samples. Extraction efficiency and the influence of sample matrix, flow rate, pH, and type and minimum amount of stripping acid were investigated. The concentration factor and detection limit of the proposed method are 500 and 12.5 pg mL-1, respectively.
Resumo:
Polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofuranes (PCDF) and polychlorinated biphenyls (PCB) are types of persistent and bioaccumulating organic pollutants with enhanced chronic toxicity and carcinogenic properties and can be considered as environmental indicators of anthropogenic activities since their occurrence in the environment can always be linked to anthropogenic activities. The present paper reviews the main sources and behaviour of these compounds in the environment as well as the risks they represent to man and biota.
Resumo:
A solid phase extraction procedure using Amberlite XAD-1180/Pyrocatechol violet (PV) chelating resin for the determination of iron and lead ions in various environmental samples was established. The procedure is based on the sorption of lead(II) and iron(III) ions onto the resin at pH 9, followed by elution with 1 mol/L HNO3 and determination by flame atomic absorption spectrometry. The influence of alkaline, earth alkaline and some transition metals, as interferents, are discussed. The recoveries for the spiked analytes were greater than 95%. The detection limits for lead and iron by FAAS were 0.37 µg/L and 0.20 µg/L, respectively. Validation of the method described here was performed by using three certified reference materials (SRM 1515 Apple Leaves, SRM 2711 Montana Soil and NRCC-SLRS-4 Riverine Water). The procedure was successfully applied to natural waters and human hair.
Resumo:
Efforts presented by the scientific community in recent years towards the development of numerous green chemical processes and wastewater treatment technologies are presented and discussed. In the light of these approaches, environmentally friendly technologies, as well as the key role played by the well-known advanced oxidation processes, are discussed, giving special attention to the ones comprising ozone applications. Fundamentals and applied aspects dealing with ozone technology and its application are also presented.
Resumo:
A simple cloud point extraction procedure is presented for the preconcentration of copper in various samples. After complexation by 4-hydroxy-2-mercapto-6-propylpyrimidine (PTU), copper ions are quantitatively extracted into the phase rich in Triton X-114 after centrifugation. Methanol acidified with 0.5 mol L-1 HNO3 was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). Analytical parameters including concentrations for PTU, Triton X-114 and HNO3, bath temperature, centrifugation rate and time were optimized. The influences of the matrix ions on the recoveries of copper ions were investigated. The detection limits (3SDb/m, n=4) of 1.6 ng mL-1 along with enrichment factors of 30 for Cu were achieved. The proposed procedure was applied to the analysis of environmental samples.
Resumo:
A new solid phase extraction (SPE) method has been developed for the selective separation and preconcentration of Cu (II) ions in food and water samples prior to its flame atomic absorption spectrometry determination. The method is based on the adsorption of the Cu(II) - 2-{[4-Amino-3-(4-methylphenyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl]acetyl}-N-phenyl hydrazinecarbothioamide complex on Amberlite XAD-8 resin. The metal complex retained on the resin was eluted with 7.5 mL of 2.0 mol L-1 HCl in acetone. The optimum conditions for the SPE of Cu(II) ions were investigated, and the method was subsequently applied to sea water, stream water, rice, tea, and tobacco samples for the determination of Cu(II) levels.
Resumo:
A dispersive liquid-liquid microextraction procedure coupled to spectrophotometry is described for the determination of the trace levels of Sudan Blue II. Analytical parameters, such as pH, volume of extraction solvent (carbon tetrachloride), volume of dispersant (ethanol), volume of sample, and extraction time, were optimized. Matrix effects were also investigated. Preconcentration factor was found to be 200. Detection limit and relative standard deviation (RSD) were 0.55 µg L-1 and 3.9%, respectively. The procedure was successfully used for the determination of trace levels of Sudan Blue II in food, ink, antifreeze, and industrial waste-water samples.
Resumo:
The progress of the severity of southern rust in maize (Zea mays) caused by Puccinia polysora was quantified in staggered plantings in different geographical areas in Brazil, from October to May, over two years (1995-1996 and 1996-1997). The logistic model, fitted to the data, better described the disease progress curves than the Gompertz model. Four components of the disease progress curves (maximum disease severity; area under the disease progress curve, AUDPC; area under the disease progress curve around the inflection point, AUDPCi; and epidemic rate) were used to compare the epidemics in different areas and at different times of planting. The AUDPC, AUDPCi, and the epidemic rate were analyzed in relation to the weather (temperature, relative humidity, hours of relative humidity >90%, and rainfall) and recorded during the trials. Disease severity reached levels greater than 30% in Piracicaba and Guaíra in the plantings between December and January. Lower values of AUDPC occurred in later plantings at both locations. The epidemic rate was positively correlated (P < 0.05) with the mean daily temperatures and negatively correlated with hours of relative humidity >90%. The AUDPC was not correlated with any weather variable. The AUDPCi was negatively related to both variables connected to humidity, but not to rain. Long periods (mostly >13 h day-1) of relative humidity >90% (that corresponded to leaf wetness) occurred in Castro. Severity of southern rust in maize has always been low in Castro, thus the negative correlations between disease and the two humidity variables.
Resumo:
A simple, sensitive and selective spectrophotometric method for the assessment of carbofuran in various formulations and in environmental water samples is described. The method is based on the coupling of hydrolyzed carbofuran with diazotized dapsone in alkaline medium at 0 4° C which gives orange red colored product having the absorption maximum at 480 nm. The product is stable for 48 h. Beer's law is obeyed in the concentration range of 0.1 4.0 µg ml-1. The molar absorptivity and Sandell's Sensitivity are 5.0 x 10(4) L mol-1 cm-1 and 4.4 ng cm-2 respectively. The method is highly reproducible and is confirmed by RSD values (1.144 %). From the recovery studies it is found that this method is accurate and it can be successfully employed for the determination of carbofuran.
Resumo:
The present study sought to observe the behavior of soils in natural state and in mixtures, in different ratios, with the industrial solid residue called whitewash mud. The work was conducted with samples of typical soils from the region of Alagoinhas, Bahia-Brazil. Wet chemical analysis and atomic absorption spectrophotometry were used in order to obtain the classification of the industrial solid residue. Solubilization and leaching tests were performed and X-ray diffraction and electron microscopy techniques were carried out. The results showed that the whitewash mud was classified as non-inert, but with great capacity of heavy metal retention largely owed to the kaolinite and goethite presence in the clay fraction of the soils, making it difficult to have heavy metals readily available for exchange.
Resumo:
Immediately after planting, tree seedlings face adverse environmental and biotic stresses that must be overcome to ensure survival and to yield a desirable growth. Hardening practices in the nursery may help improve seedling stress resistance through reduction of aboveground plant tissues and increased root volume and biomass. We conducted an assay to quantify changes in the morphogenesis following application of ethephon on seedlings of Pachystroma longifolium (Ness) I. M. Johnst.during hardening. The results showed no effect of the ethephon treatments on the number of leaves but a reduction of up to 50% in seedling height increment, and an increase in stem diameter increment of up to 44% with the 600 mg L-1 ethephon treatment, which consequently altered seedling Dickson Quality Index. Our results indicate that ethephon may help to promote desired morphological changes that occur during seedling hardening in nurseries.
Resumo:
We analyzed the nutritional composition and isotope ratios (C and N) of big-leaf mahogany (Swietenia macrophylla King) leaves in plantations established on contrasting soils and climates in Central America (State of Quintana Roo, Yucatán, México) and South America (State of Pará, Brazil). The objective was to determine the adaptability of this species to large differences in nutrient availability and rainfall regimes. Nutrient concentrations of leaves and soils were determined spectrophotometrically, and isotope ratios were measured using mass spectrometric techniques.In Pará soils were sandier, and acidic, receiving above 2000 mm of rain, whereas in Quintana Roo soils were predominantly clayey, with neutral to alkaline pH due to the underlying calcareous substrate, with about 1300 mm of rain. Leaf area/weight ratio was similar for both sites, but leaves from Quintana Roo were significantly smaller. Average N and K concentrations of adult leaves were similar, whereas Ca concentration was only slightly lower in Pará in spite of large differences in Ca availability. Leaves from this site had slightly higher P and lower Al concentrations. Differences in water use efficiency as measured by the natural abundance of 13C were negligible, the main effect of lower rainfall in Quintana Roo seemed to be a reduction in leaf area. The N isotope signature (δ15N) was more positive in Pará than in Quintana Roo, suggesting higher denitrification rates in the former. Results reveal a calciotrophic behavior and a remarkable capacity of mahogany to compensate for large differences in soil texture and nutrient availability.