138 resultados para transformation temperature
Resumo:
Deficiency of micronutrients is a public health problem. Cow milk is a source of retinol. The objective of this study is to evaluate the retinol concentration in milk commercialized in Natal/RN. Ten samples were taken of each brand of UHT milk. Vitamin content was determined by HPLC using the Shimadzu LC-10 AD Chromatograph, coupled to the Shimadzu SPD 10 A UV-VIS Detector and the Shimadzu C-R6A Chromatopac Integrator with Shim-pack CLC-ODS (M) column, measuring 4.6 mm x 25 cm. The mobile phase was 100% methanol, with a flow of 1 mL/min. The mean retinol concentration varied between 22.7 ± 4.9 µg/100 mL and 44.1 ± 4.1 µg/100 mL, with the differences statistically significant (p<0.001). Only one of the 7 brands had retinol concentration below the normal requirements for human consumption.
Resumo:
OH LIF-thermometry was applied to premixed ethanol flames at atmospheric pressure in a burner for three flame conditions. Flame temperatures were simulated from energy equation with PREMIX code of CHEMKIN software package for comparison. A kinetic modeling based on a model validated through chemiluminescence measurements and on a set of reactions for nitrogen chemistry was evaluated. Marinov's mechanism was also tested. Sensitivity analysis was performed for fuel-rich flame condition with Φ = 1.34. Simulated temperatures from both reaction mechanisms evaluated were higher than experimental values. However, the proposed kinetic modeling resulted in temperature profiles qualitatively very close to the experimental.
Resumo:
We present in this work an experimental investigation of the effect of temperature (from 25 to 180 ºC) in the electro-oxidation of ethanol on platinum in two different phosphoric acid concentrations. We observed that the onset potential for ethanol electro-oxidation shifts to lower values and the reaction rates increase as temperature is increased for both electrolytes. The results were rationalized in terms of the effect of temperature on the adsorption of reaction intermediates, poisons, and anions. The formation of oxygenated species at high potentials, mainly in the more diluted electrolyte, also contributes to increase the electro-oxidation reaction rate.
Resumo:
The thermal elimination of benzoic acid from (-)-cocaine is shown to be temperature-dependent. In the temperature range of 200-500 °C only a trans-elimination is observed leading to methylecgonidine. Above ca. 500 °C a second mechanism, the cis-elimination, comes up yielding a novel alkaloid methylisoecgonidine which has been characterized by means of mass spectrometry. At 600 °C the cis-elimination predominates. The trans-elimination is postulated a two-step process consisting of a 1,7- and a 1,5-hydrogen shift. The chemistry of cocaine base smoking is explained using the theory of chemical activation.
Resumo:
We describe the synthesis of 12 new ethyl and methyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives on solid supports with room temperature and microwave-assisted solvent-free procedures. Results show that solid supports have good catalytic activity in the formation of quinoxaline 1,4-di-N-oxide derivatives. We found that florisil and montmorillonite KSF and K10 could be used as new, easily available, inexpensive alternatives of catalysts. Additionally, room temperature and microwave-irradiation solvent-free synthesis was more efficient than a conventional procedure (Beirut reaction), reducing reaction time and increasing yield.
Resumo:
Ce-promoted Ni-catalysts from hydrotalcites were obtained. The effect of calcination temperature on the chemical and physical properties of the catalysts was studied. Several techniques were used to determine the chemical and physical characteristics of oxides. The apparent activation energies of reduction were determined. Catalytic experiments at 48 L g-1h-1 without pre-reduction in CO2 reforming of methane were performed. The spinel-like phase in these oxides was only formed at 1000 ºC. The reduction of Ni2+ in the oxides was clearly affected by the calcination temperature which was correlated with catalytic performance. The catalyst calcined at 700 ºC showed the greatest activity.
Resumo:
Mordenite (MOR) was synthesized using rice husk silica and modified by base (B), acid (A) or acid-base (AB) and converted to H-form. The modification did not destroy the MOR structure but increased surface area and generated mesopores. Lewis acidity of the parent and modified MOR samples investigated by aluminum NMR and NH3-TPD showed a decrease in the following order: HMOR > BMOR > ABMOR > AMOR. For the catalytic transformation of methylbutynol, ABMOR provided the highest conversion and selectivity of products from acid sites.
Resumo:
Both primary and secondary amines react with 2,4-dinitrochlorobenzene to give derivatives of 1-alkylamino-2,4-dinitrobenzene. These compounds are important intermediates for the synthesis of a diverse range of products. The methodology reported in the present study involves either the room temperature reaction or heating at 70 °C in ethanol in the presence of triethylamine. This transformation occurs via a nucleophilic substitution reaction. The 1-alkylamino-2,4-dinitrobenzene derivatives were obtained in greater than 90% purified yield. The selective reduction of dinitro compounds is an important synthetic strategy for the synthesis of intermediates for dyes, pharmaceuticals and agrochemicals. The use of SnCl2 as a suspension in EtOAc is a promising method for the regio- and chemo-selective reduction of 1-alkylamino-2,4-dinitrobenzenes to 1-alkylamino-2-amino-4-nitrobenzenes. These products are useful intermediates in organic synthesis.
Resumo:
This study describes the use of electroporation for transforming Xanthomonas axonopodis pv. citri (Xac), the causal agent of citrus (Citrus spp.) canker. It also evaluates the methodology used for this species under different electrical parameters. The bacterium used in the study (Xac 306) was the same strain used for recent complete sequencing of the organism. The use of a plasmid (pUFR047, gentamycin r) is reported here to be able to replicate in cells of Xac. Following the preparation and resuspension of competent cells of Xac at a density of ~4 x 10(10) cfu/ml, in 10% glycerol, and the addition of the replicative plasmid, an electrical pulse was applied to each treatment. Selection of transformants showed a high efficiency of transformation (1.1 x 10(6) transformants/mug DNA), which indicates an effective, and inverse, combination between electrical resistance (50 W) and capacitance (50 µF) for this species, with an electrical field strength of 12.5 kV.cm-1 and 2.7-ms pulse duration. Besides the description of a method for electroporation of Xac 306, this study provides additional information for the use of the technique on studies for production of mutants of this species.
Resumo:
The black spot of citrus (Citrus sp.) is caused by Guignardia citricarpa with ascospore production depending on temperature, leaf wetness, and rainfall. The number of ascospores produced was monitored using a spore trap and climatic factors were recorded using an automated meteorological station of 'Natal' and 'Valencia' sweet orange (Citrus sinensis) orchards in Mogi Guaçu in the state of São Paulo, Brazil, from November 2000 to March 2001. The fruits were bagged to prevent infection and the bags removed from different sets of fruit for one week during each of the 18 weeks of the season in both orchards. Ascospores were produced during the entire experimental period, from spring through summer, primarily after rain events. In both orchards, ascospore production reached a peak in January and February. Ascospore production was related to leaf wetness only in the Natal orange orchard but was not related to total rainfall or temperature in either orchard. Disease was most severe on fruit exposed the 7th, 8th, and 13th weeks after beginning the experiment in both cultivars as well as after the 16th week for 'Natal'. There was a strong relationship between disease severity and total rainfall for both orchards and a weak correlation between temperature and severity in the 'Natal' block only. There was no relationship between severity and leaf wetness or ascospore numbers.
Resumo:
The influence of the Al content on the phase transformations in Cu-Al-Ag alloys was studied by classical differential thermal analysis (DTA), optical microscopy (OM) and X-ray diffractometry (XRD). The results indicated that the increase in the Al content and the presence of Ag decrease the rate of the b1 phase decomposition reaction and contribute for the raise of this transition temperature, thus decreasing the stability range of the perlitic phase resulted from the b1 decomposition reaction.
Resumo:
The use of microorganisms to induce chemical modifications in organic molecules is a very useful tool in organic synthesis, to obtain biologically active substances. The fungus Cephalosporium aphidicola is known by its ability to hydroxylate several skeleton positions of many classes of organic compounds. In this work, the microbial transformation of ent-kaur-16-en-19-ol (1) by C. aphidicola, afforded two hydroxylated compounds, ent-kauran-16β,19-diol (2) and ent-kauran-16β,17,19-triol (3). Their structures were established by 1D and 2D-NMR studies. Both compounds were tested for their action on the growth of radical and shoot of Lactuca sativa.
Resumo:
The development of a large number of postharvest diseases is closely associated with fruit ripeness. Environmental conditions may affect both the pathogen development and the fruit ripening rate. The aim of this study was to determine the most favorable temperature and wetness duration to the development of anthracnose in guava fruits. Cultivars 'Kumagai' (white pulp) and 'Pedro Sato' (red pulp) were inoculated with a conidial suspension of Colletotrichum gloeosporioides and C. acutatum and incubated at constant temperature ranging from 10 to 35ºC and wetness duration of 6 and 24 hours. Disease severity and incidence were evaluated at every two days during 12 days. No infection occurred at 10 and 35ºC, regardless of the wetness duration. The optimum conditions for fruit infection were 26 and 27ºC for 'Kumagai' and 25 and 26ºC for 'Pedro Sato', adopting 24 hours of wetness. In general, the disease development in 'Kumagai' cultivar was more affected by the wetness period, compared to 'Pedro Sato'. Disease severity for 'Kumagai' fruits was maximal between 25 and 30ºC , depending on the Colletotrichum species. Regarding 'Pedro Sato', the mean diameter of lesions was greater in fruits stored at 20, 25 and 30ºC , compared to 'Kumagai' cultivar, depending on the wetness period and the species. The incubation period (between 6 and 7 days) and the latent period (between 8 and 10 days) were minimal at 30ºC. The data generated in this study will be useful either for the development of a disease warning system or for the increase in the shelf life of guavas in the postharvest.
Resumo:
In vitro experiments were conducted to assess the effects of substrate, temperature and time of exposure to temperature and photoperiod on P. pachyrhizi uredospore germination and germ tube growth. The following substrates were tested: water-agar and soybean leaf extract-agar at different leaf concentrations (0.5, 1.0, 2.0 and 4.0 g of leaves and 15g agar/L water), temperatures (10, 15, 20, 25, 30, and 35oC) and times of exposure (1, 2, 3, 4, 5, 6, 7, and 8 hours) to temperature and 12 different photoperiods. The highest germination and germ tube length was found for the soybean leaf extract agar. Maximum P. pachyrhizi uredospore germination was obtained at 21.8 and 22.3°C, and maximum germ tube growth at 21.4 and 22.1°C. The maximum uredospore germination was found at 6.4 hours exposure, while the maximum germ tube length was obtained at 7.7 h exposure. Regarding photoperiod, the maximum spore germination and the maximum uredospore germ tube length were found in the dark. Neither spore germination nor uredospore germ tube growth was completely inhibited by the exposure to continuous light.