247 resultados para resistance to antimicrobials
Resumo:
Abstract The study was carried out to screen and analyze the genetic characteristics of antimicrobial resistance in Campylobacter spp. from poultry sources. A total of 141 strains of Campylobacter isolated from samples of broilers of slaughterhouses in southern Brazil was identified by phenotypic and genotypic methods. Campylobacter isolates were evaluated for its antimicrobial susceptibility and the presence of resistance genes. The strains were investigated for antimicrobial susceptibility against two agents (ampicillin and tetracycline) by disk diffusion method. PCR assay was used to confirm the specie and the presence of ampicillin (blaOXA-61), tetracycline tet(O), and the energy-dependent multi-drug efflux pump (cmeB) genes. Campylobacter jejuni was the most ubiquitous; its presence was determined in 140 samples out of 141 (99.3%), whereas Campylobacter coli was found only in one of the contaminated samples (0.70%). The results obtained showed 65% and 35.5% of Campylobacter isolates resistant to β-lactams and tetracyclines, respectively. The cmeB gene responsible for multidrug resistance was detected in 26 isolates out 141 strains (18.5%). Moreover, 36 out of 141 Campylobacter strains (25.6%) were found to be resistant to at least two different antimicrobia resistance markers (β-lactams and tetracyclines).
Resumo:
Eleusine indica (goosegrass) is a diploid grass weed which has developed resistance to ACCase inhibitors during the last ten years due to the intensive and frequent use of sethoxydim to control grass weeds in soybean crops in Brazil. Plant dose-response assays confirmed the resistant behaviour of one biotype obtaining high resistance factor values: 143 (fenoxaprop), 126 (haloxyfop), 84 (sethoxydim) to 58 (fluazifop). ACCase in vitro assays indicated a target site resistance as the main cause of reduced susceptibility to ACCase inhibitors. PCR-generated fragments of the ACCase CT domain of the resistant and sensitive reference biotype were sequenced and compared. A point mutation was detected within the triplet of aspartate at the amino acid position 2078 (referred to EMBL accession no. AJ310767) and resulted in the triplet of glycine. These results constitute the first report on a target site mutation for a Brazilian herbicide resistant grass weed.
Resumo:
The resistance of barnyardgrass (Echinochloa crus-galli) to imidazolinone herbicides is a worldwide problem in paddy fields. A rapid diagnosis is required for the selection of adequate prevention and control practices. The objectives of this study were to develop expedite bioassays to identify the resistance to imidazolinone herbicides in barnyardgrass and to evaluate the efficacy of alternative herbicides for the post-emergence control of resistant biotypes. Three experiments were conducted to develop methods for diagnosis of resistance to imazethapyr and imazapyr + imazapic in barnyardgrass at the seed, seedling and tiller stages, and to carry out a pot experiment to determine the efficacy of six herbicides applied at post-emergence in 13 biotypes of barnyardgrass resistant to imidazolinones. The seed soaking bioassay was not able to differentiate the resistant and susceptible biotypes. The resistance of barnyardgrass to imidazolinones was effectively discriminated in the seedlings and tiller bioassays seven days after incubation at the concentrations of 0.001 and 0.0001 mM, respectively, for both imazethapyr and imazapyr + imazapic. The biotypes identified as resistant to imidazolinones showed different patterns of susceptibility to penoxsulam, bispyribac-sodium and pyrazosulfuron-ethyl, and were all controlled with profoxydim and cyhalofop-butyl. The seedling and tiller bioassays are effective in the diagnosis of barnyardgrass resistance to imidazolinone herbicides, providing an on-season opportunity to identify the need to use alternative herbicides to be applied at post-emergence for the control of the resistant biotypes.
Resumo:
ALS-inhibiting herbicides usually provide adequate weed control in irrigated rice fields. After consecutive years of use, the Cyperaceae species, globe fringerush (Fimbristylis miliacea) began to show resistance to ALS (acetolactate synthase) inhibitors. Globe fringerush is one of the most problematic herbicide-resistant weeds in irrigated rice in the state of Santa Catarina in the South of Brazil. The objective of this research was to examine cross resistance of globe fringerush to ALS inhibitors, under field conditions. Two experiments were conducted in a rice field naturally infested with ALS-resistant globe fringerush in Santa Catarina, in the 2008/09 and 2009/10 cropping seasons. The experimental units were arranged in randomized complete block design, with five replicates, consisting of two factors (herbicide and dose) in a 4 x 5 factorial arrangement. ALS herbicides included bispyribac-sodium, ethoxysulfuron, pyrazosulfuron-ethyl and penoxsulam. Six-leaf globe fringerush was sprayed with herbicide doses of 0, 0.5, 1, 2 and 4X the recommended doses in a spray volume of 200 L ha-1. The number of rice culm, filled and sterile grains, plant height, dry shoot biomass and grain yield were recorded. Globe fringerush control was evaluated 28 and 70 days after herbicide application (DAA); shoots were harvested at 13 weeks after herbicide application and dry weight recorded. Competition with globe fringerush reduced the number of culm and rice grain yield. The globe fringerush biotype in this field was resistant to all ALS herbicides tested. Penoxsulam had the highest level of activity among treatments at 28 and 70 DAA, but the control level was only 50% and 42%, respectively, in the second year of assessment. This was not enough to prevent rice yield loss. Alternative herbicides and weed control strategies are necessary to avoid yield losses in rice fields infested with ALS-resistant biotypes of globe fringerush.
Resumo:
Parasitic weed species of the genus Orobanche are serious threat for the production of several crops in Europe, Africa and Asia. Research on resistant host plant varieties is one of the most effective management strategies for this parasitic weed. In this study, the susceptibility of twenty-nine tomato varieties to broomrape infection (Orobanche aegyptiaca) under greenhouse conditions was investigated. The employed experimental design was completely randomized with three replications. Differences in susceptibility to infection were monitored among tomato varieties based on their difference in the number of emerged shoots of broomrape and broomrape dry weight (shoots and tubercles). Date of Orobanche emergence varied over a period of 3 to 30 days between varieties. Very late infection was monitored for varieties of Cal-jN3, Viva, Caligen 86, Packmor, CSX 5013, Hyb. PS 6515 and Hyb Petopride5. Differences in the growth and fruit yield among tomato varieties were also found in response to broomrape infestation. Moderate levels of resistance were obtained in Viva, Caligen 86, Hyb. PS 6515, Hyb.Firenze (PS 8094) and Cal-jN3 among other tomato varieties. In contrast, varieties of Kimia-Falat, Hyb. Petopride II and Hyb.AP865 were the most susceptible hosts to Orobanche aegyptiaca.
Does the resistance to glyphosate herbicide affect the competitive ability of ryegrass with soybean?
Resumo:
The objective this work was to investigate the competitive ability between resistant and susceptible ryegrass biotypes and of these with soybean crop. Four experiments were carried under greenhouse, in a completely randomized design with four replications, in 2011 and 2012. Treatments were arranged in additive series and replacement series assay. In each series, the proportions among ryegrass resistant and susceptible plants related to soybean were: 100:0, 75:25, 50:50, 25:75 e 0:100. Leaf area and shoot dry mass were evaluated. Competitiveness statistical analysis consisted in applying diagrams to the replacement series and alternative interpretations of the competitiveness indexes. The soybean crop had equivalent competitiveness to the susceptible ryegrass biotype and inferior to the resistant biotype, while the biotypes, both susceptible and resistant to glyphosate, present equivalent competitive ability. In general, the intraspecific competition is more harmful to ryegrass when in competition with soybean, while interspecific competition is predominant for culture.
Resumo:
Due to the limited number of herbicides registered for the control of dicot weeds in cotton crops, ALS inhibitors have been used on an intensive and recurrent basis. Given that, cases of poor weed control have been described after application of these herbicides in the main cotton producing areas in Brazil, the purpose of the present work was to evaluate the occurrence of resistance to ALS herbicides in Amaranthus viridis biotypes from those areas. Dose-response curves were prepared after pre-emergence applications of trifloxysulfuron-sodium (0; 1.8; 3.7; 7.5; 15 and 30 g ha-1) and pyrithiobac-sodium (0; 35; 70; 140; 280 and 560 g ha-1), equivalent to 0, ¼, ½, 1, 2 and 4 times the recommended commercial rates. The selection of trifloxysulfuron-sodium resistant biotypes of A. viridis was confirmed in samples from Bahia (BA 7, BA 8, BA 9 and BA 11). However, no resistance to pyrithiobac-sodium was found for biotypes either from Bahia or from Mato Grosso do Sul.
Resumo:
The objectives of this research were to evaluate (1) weed species presented in rice fields in relation to the geographical zone and crop rotation and (2) the resistance level of Ischaemum rugosum to the herbicide bispyribac-sodium. For the first objective, were sampled 79 commercial fields of rice to establish weed density, coverage, and rotation system in the evaluated fields with record of bispyribac-sodium application of at least five years. To reach the second objective, the seeds were collected from plants in commercial fields with different control levels of bispyribac-sodium herbicide. Seeds were germinated in trays under controlled conditions. When plants presented three leaves these were treated with bispyribac-sodium at different doses. Percentages of control and dry weight of plants were evaluated 12 days after treatments (dat). Dominant species in evaluated fields was I. rugosum, with a frequency of 100%, presenting escapes to different chemical commercial treatments. No significant differences were recorded between rotation systems, nevertheless, the most of I. rugosum population was found in the system rice-fallow-rice. The response of applications at different concentrations allows concluding that 65% of samples had resistance at different degrees reported as indexes from 2 to 42 which are related to rotation systems.
Resumo:
Rottboellia cochinchinensis is an annual grass weed species known as itchgrass, or "caminadora" in America´s Spanish speaking countries, and has become a major and troublesome weed in several crops. The application of fluazifop-P-butyl at recommended rates (125 g a.i. ha-1) was observed to be failing to control itchgrass in a field in San José, Upala county, Alajuela province, Costa Rica. Plants from the putative resistant R. cochinchinensis population survived fluazifop-P-butyl when treated with 250 g a.i. ha-1 (2X label rate) at the three- to four-leaf stage under greenhouse conditions. PCR amplification and sequencing of partial carboxyl transferase domain (CT) of the acetyl-CoA carboxylase (ACCase) gene were used to determine the molecular mechanism of resistance. A single non-synonymous point mutation from TGG (susceptible plants) to TGC (putative resistant plants) that leads to a Trp-2027-Cys substitution was found. This Trp-2027-Cys mutation is known to confer resistance to all aryloxyphenoxyproprionate (APP) herbicides to which fluazifop-P-butyl belongs. To the best of our knowledge, this is the first report of fluazifop-P-butyl resistance and a mutation at position 2027 for a Costa Rican R. cochinchinensis population.
Resumo:
Six wheat genotypes and their F1 and F2 generations were exposed to the action of Helminthosporium sativum culture filtrates to examine the genetics of hexaploid wheat resistance. The objective was to improve the efficiency of breeding programs by identifying the action and number of genes involved in the resistance. The varied response of the tested genotypes to the culture filtrates allowed division of the genotypes into four groups: resistant, moderately resistant, moderately susceptible and susceptible. This variability was detected in the progeny, suggesting that the parents have distinct genetic constitutions. Additive gene action predominated and genetic gain was shown to be possible through selection. The genetic control of the resistance trait seems to be complex because of the presence of gene interaction and the difficulty of eliminating the environmental effects. The inheritance seems to be oligogenic
Resumo:
Different levels of insulin sensitivity have been described in several animal models of obesity as well as in humans. Monosodium glutamate (MSG)-obese mice were considered not to be insulin resistant from data obtained in oral glucose tolerance tests. To reevaluate insulin resistance by the intravenous glucose tolerance test (IVGTT) and by the clamp technique, newborn male Wistar rats (N = 20) were injected 5 times, every other day, with 4 g/kg MSG (N = 10) or saline (control; N = 10) during the first 10 days of age. At 3 months, the IVGTT was performed by injecting glucose (0.75 g/kg) through the jugular vein into freely moving rats. During euglycemic clamping plasma insulin levels were increased by infusing 3 mU . kg-1 . min-1 of regular insulin until a steady-state plateau was achieved. The basal blood glucose concentration did not differ between the two experimental groups. After the glucose load, increased values of glycemia (P<0.001) in MSG-obese rats occurred at minute 4 and from minute 16 to minute 32. These results indicate impaired glucose tolerance. Basal plasma insulin levels were 39.9 ± 4 µU/ml in control and 66.4 ± 5.3 µU/ml in MSG-obese rats. The mean post-glucose area increase of insulin was 111% higher in MSG-obese than in control rats. When insulinemia was clamped at 102 or 133 µU/ml in control and MSG rats, respectively, the corresponding glucose infusion rate necessary to maintain euglycemia was 17.3 ± 0.8 mg . kg-1 . min-1 for control rats while 2.1 ± 0.3 mg . kg-1 . min-1 was sufficient for MSG-obese rats. The 2-h integrated area for total glucose metabolized, in mg . min . dl-1, was 13.7 ± 2.3 vs 3.3 ± 0.5 for control and MSG rats, respectively. These data demonstrate that MSG-obese rats develop insulin resistance to peripheral glucose uptake
Resumo:
We determined the effect of acute extracellular fluid volume changes on saline flow through 4 gut segments (ileocolonic, ileal, ileocolonic sphincter and proximal colon), perfused at constant pressure in anesthetized dogs. Two different experimental protocols were used: hypervolemia (iv saline infusion, 0.9% NaCl, 20 ml/min, volume up to 5% body weight) and controlled hemorrhage (up to a 50% drop in mean arterial pressure). Mean ileocolonic flow (N = 6) was gradually and significantly decreased during the expansion (17.1%, P<0.05) and expanded (44.9%, P<0.05) periods while mean ileal flow (N = 7) was significantly decreased only during the expanded period (38%, P<0.05). Mean colonic flow (N = 7) was decreased during expansion (12%, P<0.05) but returned to control levels during the expanded period. Mean ileocolonic sphincter flow (N = 6) was not significantly modified. Mean ileocolonic flow (N = 10) was also decreased after hemorrhage (retracted period) by 17% (P<0.05), but saline flow was not modified in the other separate circuits (N = 6, 5 and 4 for ileal, ileocolonic sphincter and colonic groups, respectively). The expansion effect was blocked by atropine (0.5 mg/kg, iv) both on the ileocolonic (N = 6) and ileal (N = 5) circuits. Acute extracellular fluid volume retraction and expansion increased the lower gastrointestinal resistances to saline flow. These effects, which could physiologically decrease the liquid volume being supplied to the colon, are possible mechanisms activated to acutely balance liquid volume deficit and excess.
Resumo:
Resistance to chemotherapy in cancer cells is mainly mediated by overexpression of P-glycoprotein (Pgp), a plasma membrane ATP-binding cassette (ABC) transporter which extrudes cytotoxic drugs at the expense of ATP hydrolysis. Pgp consists of two homologous halves each containing a transmembrane domain and a cytosolic nucleotide-binding domain (NBD) which contains two consensus Walker motifs, A and B, involved in ATP binding and hydrolysis. The protein also contains an S signature characteristic of ABC transporters. The molecular mechanism of Pgp-mediated drug transport is not known. Since the transporter has an extraordinarily broad substrate specificity, its cellular function has been described as a "hydrophobic vacuum cleaner". The limited knowledge about the mechanism of Pgp, partly due to the lack of a high-resolution structure, is well reflected in the failure to efficiently inhibit its activity in cancer cells and thus to reverse multidrug resistance (MDR). In contrast to the difficulties encountered when studying the full-length Pgp, the recombinant NBDs can be obtained in large amounts as soluble proteins. The biochemical and biophysical characterization of recombinant NBDs is shown here to provide a suitable alternative route to establish structure-function relationships. NBDs were shown to bind ATP and analogues as well as potent modulators of MDR, such as hydrophobic steroids, at a region close to the ATP site. Interestingly, flavonoids also bind to NBDs with high affinity. Their binding site partly overlaps both the ATP-binding site and the steroid-interacting region. Therefore flavonoids constitute a new promising class of bifunctional modulators of Pgp.
Resumo:
MicroRNAs (miRNAs) are small RNA molecules that modulate gene expression implicated in cancer, which play crucial roles in diverse biological processes, such as development, differentiation, apoptosis, and proliferation. The aim of this study was to investigate whether miR-30c mediated the resistance of breast cancer cells to the chemotherapeutic agent doxorubicin (ADR) by targeting tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ). miR-30c was downregulated in the doxorubicin-resistant human breast cancer cell lines MCF-7/ADR and MDA-MB-231/ADR compared with their parental MCF-7 and MDA-MB-231 cell lines, respectively. Furthermore, we observed that transfection of an miR-30c mimic significantly suppressed the ability of MCF-7/ADR to resist doxorubicin. Moreover, the anti-apoptotic gene YWHAZ was confirmed as a target of miR-30c by luciferase reporter assay, and further studies indicated that the mechanism for miR-30c on the sensitivity of breast cancer cells involved YWHAZ and its downstream p38 mitogen-activated protein kinase (p38MAPK) pathway. Together, our findings provided evidence that miR-30c was one of the important miRNAs in doxorubicin resistance by regulating YWHAZ in the breast cancer cell line MCF-7/ADR.
Resumo:
Idiopathic dilated cardiomyopathy (IDC) has been hypothesized as a multifactorial disorder initiated by an environment trigger in individuals with predisposing human leukocyte antigen (HLA) alleles. Published data on the association between HLA-DR3 antigen and IDC risk are inconclusive. To derive a more precise estimation of the relationship, a meta-analysis was performed. Studies were identified by searching the PUBMED and Embase database (starting from June 2015). A total of 19 case-control studies including 1378 cases and 10383 controls provided data on the association between HLA-DR3 antigen and genetic susceptibility to IDC. Overall, significantly decreased frequency of HLA-DR3 allele (OR=0.72; 95%CI=0.58-0.90; P=0.004) was found in patients with IDC compared with controls. When stratified by myocardial biopsy or non-biopsy cases, statistically decreased risk was found for IDC in myocardial biopsy cases (OR=0.69; 95%CI=0.57-0.84; P=0.0003). In the subgroup analysis by ethnicity, borderline statistically significantly decreased risk was found among Europeans from 12 case-control studies (OR=0.76; 95%CI=0.58-1.00; P=0.05). In conclusion, our results suggest that individuals with HLA-DR3 antigen may have a protective effect against IDC.