127 resultados para Pulsed reactors
Resumo:
Several hundreds of artificial radionuclides are produced as the result of human activities, such as the applications of nuclear reactors and particle accelerators, testing of nuclear weapons and nuclear accidents. Many of these radionuclides are short-lived and decay quickly after their production, but some of them are longer-lived and are released into the environment. From the radiological point of view the most important radionuclides are cesium-137, strontium-90 and plutonium-239, due to their chemical and nuclear characteristics. The two first radioisotopes present long half life (30 and 28 years), high fission yields and chemical behaviour similar to potassium and calcium, respectively. No stable element exists for plutonium-239, that presents high radiotoxicity, long half-life (24000 years) and some marine organisms accumulate plutonium at high levels. The radionuclides introduced into marine environment undergo various physical, chemical and biological processes taking place in the sea. These processes may be due to physical dispersion or complicated chemical and biological interactions of the radionuclides with inorganic and organic suspend matter, variety of living organisms, bottom sediments, etc. The behaviour of radionuclides in the sea depends primarily on their chemical properties, but it may also be influenced by properties of interacting matrices and other environmental factors. The major route of radiation exposure of man to artificial radionuclides occuring in the marine environment is through ingestion of radiologically contamined marine organisms. This paper summarizes the main sources of contamination in the marine environment and presents an overview covering the oceanic distribution of anthropogenic radionuclides in the FAO regions. A great number of measurements of artificial radionuclides have been carried out on various marine environmental samples in different oceans over the world, being cesium-137 the most widely measured radionuclide. Radionuclide concentrations vary from region to region, according to the specific sources of contamination. In some regions, such as the Irish Sea, the Baltic Sea and the Black Sea, the concentrations depend on the inputs due to discharges from reprocessing facilities and from Chernobyl accident. In Brazil, the artificial radioactivity is low and corresponds to typical deposition values due to fallout for the Southern Hemisphere.
Resumo:
The solution fluorescence of N-alkyl-2,3-naphthalimides (1-4) in polar protic and aprotic solvents was compared to the emission from solid samples resulting from the imide complexation with b-cyclodextrin or adsorption on the surface of microcrystalline cellulose. Solid samples of the inclusion complex 2,3-naphthalimides/b-cyclodextrin show maximum for fluorescence emission significantly different to the observed in methanolic solution. Beside this, a clear effect on the alkyl chain length could be observed for these samples which is probably due to differences in probe location inside the cyclodextrin cavity. The constancy for fluorescence quantum yield and fluorescence lifetime for the imides 1 - 4 adsorbed on microcrystalline cellulose suggests that, independently of the polarity of the solvent used for sample preparation, the probe is preferentially located on the cellulose surface. An increase of fluorescence quantum yield and fluorescence lifetime for solid samples, when compared to the values obtained in solution for the different solvents employed in this study (acetonitrile, methanol and water), is fully in accordance with a decrease of the probe mobility due to inclusion in b-cyclodextrin or to adsorption on cellulose.
Resumo:
An important component for the automation of flow injection analysis (FIA) systems is the sample injection valve. A simple and inexpensive commutator with 16 pinch valves (8 normally open and 8 closed) was developed and configured as a multichannel injection valve. It is activated by a single solenoid of 3 Kgf, powered by a pulsed driver circuit, controlled by a microcomputer or a switch. FIA with spectrophometric detection of potassium dichromate solution was used for the evaluation of the new injection valve and its comparison with other valves, for sample loops of 50, 100, 200, 300 and 500 muL. The repeatability was favorable (RSD 1.0% for 15 injections at each loop volume) compared to a manual injector, an electropneumatic injector and an injector configured with three mini solenoid valves (RSD 1.1, 1.3 and 1.0%, respectively, for15 injections at each loop volume).
Resumo:
Aquarium air pumps are proposed and evaluated as pneumatic liquid propulsion devices for flow injection and continuos flow analysis (FIA and CFA) systems. This kind of pump is widely available at a very low cost and it can sustain a pressure around of 4 psi (0.28 bar) indefinitely. By applying this air pressure onto a solution contained in a reservoir flask, it is possible to reach flow rates of up to 12.5 mL min-1 for circuits comprising reactors, made from 0.8 i.d. tubing with a length of 100 cm. The precise adjustment of flow rate below the maximum one can be made with a simplified needle valve or inserting in series a short length of capillary tube. The absence of flow pulsation is a definite advantage in comparison with peristaltic pumps, especially when amperometric detection is elected, as confirmed experimentally in FIA and CF applications.
Resumo:
The application of microwave heating to organic synthesis is presented in a concise manner. Issues such as the history of the microwave oven, dielectric heating, reactions techniques (dry reactions, MORE chemistry), domestic ovens, microwave reactors, microwave effect and control of selectivities are discussed. Selected examples from the literature showed faster reactions, improved yields, less thermal degradations and cleaner reactions.
Resumo:
Diffusion coefficients provide uniquely detailed and easily interpreted information on molecular organization and phase structure. They are quite sensitive to structural changes, and to binding and association phenomena, in particular for liquid colloidal or macromolecular systems. This paper describes the principles of diffusion measurements in liquids by pulsed magnetic field gradient spin-echo (PFG-SE) NMR spectroscopy. The important PFG-SE technique known as DOSY is presented and discussed. This is a noninvasive technique that can provide individual multicomponent translational diffusion coefficients with good precision in a few minutes, without the need for radioactive isotopic labelling.
Resumo:
Today satellites propulsion is based on the use of monopropellant and/or bipropellant chemical systems. The maneuvering of satellite is based on the hydrazine decomposition micropropulsors catalyzed by metallic iridium supported on g-alumina. This reaction is a surface reaction and is strongly exothermic and implies that the operation of the micropropulsor is controlled by the mass and heat diffusions. For this reason and for the fact that the propulsor operation is frequently in pulsed regime, the catalyst should support high pressure and temperature variations within a short time period. The performance and the durability of the commercial catalyst are jeopardized by the low thermal conductivity of the alumina. The low thermal conductivity of the alumina support restricts the heat diffusion and leads to the formation of hot spots on the catalyst surface causing the metal sintering and/or fractures of the support, resulting in loss of the activity and catalyst destruction. This work presents the synthesis and characterization of new carbon composite support for the active element iridium, in substitution of the commercial catalysts alumina based support. These supports are constituted of carbon nanofibers (30 to 40 nm diameter) supported on a macroscopic carbon felt. These materials present high thermal conductivity and mechanical resistance, as well as the easiness to be shaped with different macroscopic shapes. The mechanical stability and the performance of the iridium supported on the carbon composite support, evaluated in a laboratory scale test in hydrazine decomposition reaction, are superior compared to the commercial catalyst.
Resumo:
With the aim of studying the interaction of fast electrons with solid surfaces we have developed an experimental set-up based on electron stimulated desorption (ESD) coupled to time-of-flight (TOF) mass spectrometry. Poly(methyl methacrylate) and poly(vynil chloride) samples have been irradiated by a pulsed electron beam of 1.2 keV and 0.18 µs FWHM. The results show that H+ is the main ionic species to desorb after electron bombardment. In addition, other ionic fragments were also observed and assigned. These results show the potentiality of this technique in the study of ESD of polymers.
Resumo:
Solid-phase organic synthesis (SPOS) has been considered the main strategy for the construction of combinatorial libraries, because its simplicity leads to faster synthetic procedures. In addition to that, a series of reports in the specialized literature show great advantages in the use of microwave activation, when compared to classical heating, for instance: shorter reaction times, in some cases from several hours to a few minutes, increase of selectivity and product yields, energy economy and reduction and/or elimination of solvent. This review describes the use of microwave ovens/reactors in solid phase organic synthesis, describing the advantages, equipment and reactions using both techniques.
Resumo:
This review presents a brief account concerning the production, characterization and evolution of the knowledge in the area of diamond and boron-doped diamond films. The most important methods used for the growth of these films, such as chemical vapor deposition and high pressure/high temperature systems, as well as the several kinds of reactors which can be employed are reviewed. However, larger emphasis is given to the CVD method. Morphological, structural and electric properties of these films, as well as their role in the performance of voltammetric electrodes for electrochemistry and electroanalytical chemistry are also discussed.
Resumo:
Butyltin compounds were investigated in surface sediments from 17 stations in Todos os Santos Bay. Analytical conditions for organotin determination in marine sediments were optimized for GC with pulsed flame photometric detection. Detection limits were: 5.4 µg kg-1 for TBT; 0.2 µg kg-1 for DBT; and 2.1 µg kg-1 for MBT, using a 610-nm filter. In general, TBT concentrations were low and in the range of
Resumo:
The main topics related to the use of dual-site catalysts in the production of polymers with broad molecular weight distribution are reviewed. The polymerization using dual-site catalysts is more economical and allows to produce a higher quality product than other processes, such as polymer blend and multistage reactors. However, the formulation of these catalysts is quite complicated since the same catalyst must produce distinct polymer grades. In addition, the release of patents concerning the combination of metallocenes and new technologies for polymerization shows that polymerization processes using dual-site catalysts are of current industrial interest.
Resumo:
The development and characterization of bioreactors or IMER (immobilized enzyme reactors) as research tools are important in the scope of medicinal chemistry and constitute an alternative for the rational development of drugs. This approach does not require highly purified enzymes or a great amount of protein, but increase the enzymatic stability against heat, organic solvents and pH, without too much loss of catalyst activity. Immobilized enzyme reactors (IMER) can be used for the accomplishment of high efficiency screening on-line and, thus inhibitors can be quickly identified. Here, we emphasize the development of IMER by use of different methods of immobilization and chromatographic supports. Their applications, in different areas of research, are also fully discussed.
Resumo:
The rice husk combustion in a bubbling and atmospheric fluidized bed reactor was investigated. This paper presents the rice husk ash characterization employing the techniques of X-ray diffraction (XRD), X-ray fluorescence (XRF), and scanning electron microscopy (SEM) among others. After combustion, a rice husk ash containing 93% amorphous silica and <3% unburned char was produced. Methods usually applied to fixed bed considering external sources of energy and high reaction times were employed. Thus, the potential of this type of reactors with respect to speed, continuity and self-sufficiency energy of the process was shown.
Resumo:
We investigated the impact of sulphate and the redox mediator Anthraquinone-2,6-disulfonate (AQDS) on the decolorization of the azo dyes Congo Red (CR) and Reactive Black 5 (RB5). In anaerobic reactors free of extra sulphate dosage, the color removal efficiency decreased drastically when the external electron donor ethanol was removed. In presence of an extra dosage of sulphate, CR decolourisations were 47.8% (free of AQDS) and 96.5% (supplemented with AQDS). The decolourisations achieved in both reactors with RB5 were lower than the ones found with CR. Finally, the biogenic sulphide contribution on azo dye reduction was negligiable.