152 resultados para Lipid-modified Azurin
Resumo:
The study determined the sensitivity and specificity of the indirect fluorescent antibody test (IFAT) and modified agglutination test (MAT) for anti-Toxoplasma gondii antibody detection by analyzing sera from 46 experimentally infected pigs. Values for sensitivity were 95.7% (confidence interval 95%: 84.0-99.2%) and for specificity 97.8% (confidence interval 95%: 87.0-99.9%) in both tests. There was an optimum agreement of results between IFAT and MAT evidenced by a Kappa test of 0.86. These results validate these tests for the detection of T. gondii infection in pigs. IFAT and MAT despite methodologies with different characteristics and readings have similar accuracy in pig serum samples.
Resumo:
The study aimed to evaluate tear production by means of modified Schirmer tear tes-1 (mSTT-1) in neonate cats. Likewise, correlation between mSTT-1 and STT-1 was assessed in vitro. Standard SST strips were cut in half and after eye lid opening, tear production of neonates (n=15) was daily measured in both eyes (mSTT-1), until the 7th day, and at day 14, 21, and 28. Animals were daily weighted until 28 days of age. Results were compared statistically (P<0.05). During the first 7 days, the overall mSTT-1 mean was 0.76 wetting/minute. Significant differences between right and left eyes were not observed at any time point (P=1.00). Tear secretion increased significantly, from the 14th to 28th day, in comparison with 7 first days (P<0.05). Positive correlation between maturity parameters and tear secretion was observed (P<0.0001). Distance between slopes of each strip changed significantly (P<0.0001). It was concluded that tear secretion in the neonatal period of cats is very below the reference values described for young and adults of the same species. It is not possible to extrapolate results obtained with mSTT-1 to standard STT-1.
Resumo:
This article deals with a contour error controller (CEC) applied in a high speed biaxial table. It works simultaneously with the table axes controllers, helping them. In the early stages of the investigation, it was observed that its main problem is imprecision when tracking non-linear contours at high speeds. The objectives of this work are to show that this problem is caused by the lack of exactness of the contour error mathematical model and to propose modifications in it. An additional term is included, resulting in a more accurate value of the contour error, enabling the use of this type of motion controller at higher feedrate. The response results from simulated and experimental tests are compared with those of common PID and non-corrected CEC in order to analyse the effectiveness of this controller over the system. The main conclusions are that the proposed contour error mathematical model is simple, accurate, almost insensible to the feedrate and that a 20:1 reduction of the integral absolute contour error is possible.
Resumo:
Glyphosate is an herbicide that inhibits the enzyme 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPs) (EC 2.5.1.19). EPSPs is the sixth enzyme of the shikimate pathway, by which plants synthesize the aromatic amino acids phenylalanine, tyrosine, and tryptophan and many compounds used in secondary metabolism pathways. About fifteen years ago it was hypothesized that it was unlikely weeds would evolve resistance to this herbicide because of the limited degree of glyphosate metabolism observed in plants, the low resistance level attained to EPSPs gene overexpression, and because of the lower fitness in plants with an altered EPSPs enzyme. However, today 20 weed species have been described with glyphosate resistant biotypes that are found in all five continents of the world and exploit several different resistant mechanisms. The survival and adaptation of these glyphosate resistant weeds are related toresistance mechanisms that occur in plants selected through the intense selection pressure from repeated and exclusive use of glyphosate as the only control measure. In this paper the physiological, biochemical, and genetic basis of glyphosate resistance mechanisms in weed species are reviewed and a novel and innovative theory that integrates all the mechanisms of non-target site glyphosate resistance in plants is presented.
Resumo:
Leaves of Pothomorphe peltata (L.) Miq. (Piperaceae) are used locally as anti-inflammatory, antipyretic, hepatoprotective and diuretic infusions and to treat external ulcers and local infections in several parts of the Peruvian, Bolivian and Brazilian Amazon region. The antioxidant activity of different extracts of P. peltata was studied using the hydroperoxide-initiated chemiluminescence assay in liver homogenates, and the methanolic extract was found to have the highest antioxidant activity, with an IC50 = 4 µg/ml. Aqueous and dichloromethane extracts did not show antioxidant activity. The extracts were further evaluated using the thiobarbituric acid-reactive substances (TBARS) assay. Finally, an assay of DNA sugar damage induced by Fe (II) salt was used to determine the capacity of the extracts to suppress the oxidative degradation of DNA. All the extracts showed antioxidant activity in the latter two bioassays. The methanolic extract showed the highest activity in reducing oxidative damage to DNA, with an IC50 = 5 µg/ml. Since this extract was highly effective in reducing chemiluminescence and DNA damage, and because the latter activity could be due to the presence of compounds that bind to DNA, DNA-binding activity was studied using the DNA-methyl green (DNA-MG) bioassay. A 30% decrease in the initial absorbance of DNA-MG complex was observed in the methanolic extract at 1000 µg/ml, suggesting the presence of compounds that bind to genetic material. No DNA-binding activity was observed in the aqueous or dichloromethane extracts
Resumo:
The aim of the present investigation was to extend a previous study, showing a correlation of the variations of hemolymph carbohydrates with synodic lunar-like cycle and its circaseptan harmonics to worker honeybee hemolymph lipids. Hemolymph lipid concentrations of emerging worker imagos were analyzed in terms of one ideal synodic lunar cycle and processed by the cosinor method testing the null hypothesis versus the presence of 29.5-, 14.8- or 7.4-day periods in the data. A rhythmicity statistically compatible with a 29.5-day rhythm was observed for triacylglycerols and steroids as well as for body weight. A circadiseptan rhythm was determined for 1,3 diacylglycerols, while fatty acids and phospholipids exhibited a circaseptan rhythm. An agreement of peaks for triacylglycerols, steroids and body weight at the new moon, but not at the full moon, was noted with respect to trehalose and glucose circadiseptan rhythms. The latter moon-phase timing of peaks and nadirs, compared with that previously determined for trehalose and glucose, appeared to be identical to the circadiseptan rhythm and reciprocal for the circaseptan rhythms of 1,3 diacylglycerols. Reciprocal tendencies in circaseptans of trehalose and glucose on the one hand, and fatty acids and phospholipids on the other are indicated. The underlying causal nexus of these relationships is unknown
Resumo:
Aluminum (Al3+) intoxication is thought to play a major role in the development of Alzheimer's disease and in certain pathologic manifestations arising from long-term hemodialysis. Although the metal does not present redox capacity, it can stimulate tissue lipid peroxidation in animal models. Furthermore, in vitro studies have revealed that the fluoroaluminate complex induces diacylglycerol formation, 43-kDa protein phosphorylation and aggregation. Based on these observations, we postulated that Al3+-induced blood platelet aggregation was mediated by lipid peroxidation. Using chemiluminescence (CL) of luminol as an index of total lipid peroxidation capacity, we established a correlation between lipid peroxidation capacity and platelet aggregation. Al3+ (20-100 µM) stimulated CL production by human blood platelets as well as their aggregation. Incubation of the platelets with the antioxidants nor-dihydroguaiaretic acid (NDGA) (100 µM) and n-propyl gallate (NPG) (100 µM), inhibitors of the lipoxygenase pathway, completely prevented CL and platelet aggregation. Acetyl salicylic acid (ASA) (100 µM), an inhibitor of the cyclooxygenase pathway, was a weaker inhibitor of both events. These findings suggest that Al3+ stimulates lipid peroxidation and the lipoxygenase pathway in human blood platelets thereby causing their aggregation
Resumo:
The biodistribution and removal from plasma (measured as fractional clearance rate, FCR, per hour) of native and oxidatively modified 99mtechnetium-labeled ß-very low density lipoprotein (99mTc-ß-VLDL) were investigated in hypercholesterolemic (HC) and control (C) three-month old New Zealand rabbits. The intracellular accumulation of ß-VLDL labeled with 99mTc was studied in vitro in THP-1 cells and monocyte-derived macrophages isolated from rabbits. After intravenous injection into C rabbits, copper-oxidized ß-VLDL (99mTc-ox-ß-VLDL) was cleared from the circulation faster (0.362 ± 0.070/h) than native ß-VLDL (99mTc-nat-ß-VLDL, 0.241 ± 0.070/h). In contrast, the FCR of 99mTc-ox-ß-VLDL in HC rabbits was lower (0.100 ± 0.048/h) than that of 99mTc-nat-ß-VLDL (0.163 ± 0.043/h). The hepatic uptake of radiolabeled lipoproteins was lower in HC rabbits (0.114 ± 0.071% injected dose/g tissue for 99mTc-nat-ß-VLDL and 0.116 ± 0.057% injected dose/g tissue for 99mTc-ox-ß-VLDL) than in C rabbits (0.301 ± 0.113% injected dose/g tissue for 99mTc-nat-ß-VLDL and 0.305 ± 0.149% injected dose/g tissue for 99mTc-ox-ß-VLDL). The uptake of 99mTc-nat-ß-VLDL and 99mTc-ox-ß-VLDL by atherosclerotic aorta lesions isolated from HC rabbits (99mTc-nat-ß-VLDL: 0.033 ± 0.012% injected dose/g tissue and 99mTc-ox-ß-VLDL: 0.039 ± 0.017% injected dose/g tissue) was higher in comparison to that of non-atherosclerotic aortas from C rabbits (99mTc-nat-ß-VLDL: 0.023 ± 0.010% injected dose/g tissue and 99mTc-ox-ß-VLDL: 0.019 ± 0.010% injected dose/g tissue). However, 99mTc-nat-ß-VLDL and 99mTc-ox-ß-VLDL were taken up by atherosclerotic lesions at similar rates. In vitro studies showed that both monocyte-derived macrophages isolated from rabbits and THP-1 macrophages significantly internalized more 99mTc-ox-ß-VLDL than 99mTc-nat-ß-VLDL. These results indicate that in cholesterol-fed rabbits 99mTc-ox-ß-VLDL is slowly cleared from plasma and accumulates in atherosclerotic lesions. However, although the extent of in vitro uptake of 99mTc-ox-ß-VLDL by macrophages was high, the in vivo accumulation of this radiolabeled lipoprotein by atherosclerotic lesions did not differ from that of 99mTc-nat-ß-VLDL.
Resumo:
Total serum lipids, as well as apolipoproteins A-I (apo A-I) and B (apo B), were determined in 74 patients with chronic liver failure without cholestasis and in 82 normal subjects. The VLDL, LDL and HDL lipid fractions were reduced in the liver failure group by 36%, 24% and 46%, respectively (P<0.001). Apolipoproteins A-I and B were also reduced by 26% and 25%, respectively (P<0.001). However, the reduction of HDL cholesterol (HDLc) was more pronounced than that of apo A-I and the HDLc:apo A-I ratio was significantly lower in the liver failure group. After separating these patients into groups with plasma albumin lower than 3.0, between 3.0 and 3.5, and higher than 3.5 g/dl, the HDLc:apo A-I ratio was proportional to plasma albumin, but the correlation was not statistically significant. When these patients were separated by the Child classification of liver function, there was a correlation between the HDLc:apo A-I ratio and liver function. The differences in the HDLc:apo A-I ratio between the Child groups B and C, and A and C were statistically significant (P<0.05). We conclude that there is a more pronounced reduction in HDL cholesterol than in apo A-I in liver failure patients. Therefore, the HDLc:apo A-I ratio is a marker of liver function, probably because there is a decreased lecithin-cholesterol acyltransferase production by the diseased liver
Resumo:
The free form of the iron ion is one of the strongest oxidizing agents in the cellular environment. The effect of iron at different concentrations (0, 1, 5, 10, 50, and 100 µM Fe3+) on the normal human red blood cell (RBC) antioxidant system was evaluated in vitro by measuring total (GSH) and oxidized (GSSG) glutathione levels, and superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px) and reductase (GSH-Rd) activities. Membrane lipid peroxidation was assessed by measuring thiobarbituric acid reactive substance (TBARS). The RBC were incubated with colloidal iron hydroxide and phosphate-buffered saline, pH 7.45, at 37oC, for 60 min. For each assay, the results for the control group were: a) GSH = 3.52 ± 0.27 µM/g Hb; b) GSSG = 0.17 ± 0.03 µM/g Hb; c) GSH-Px = 19.60 ± 1.96 IU/g Hb; d) GSH-Rd = 3.13 ± 0.17 IU/g Hb; e) catalase = 394.9 ± 22.8 IU/g Hb; f) SOD = 5981 ± 375 IU/g Hb. The addition of 1 to 100 µM Fe3+ had no effect on the parameters analyzed. No change in TBARS levels was detected at any of the iron concentrations studied. Oxidative stress, measured by GSH kinetics over time, occurs when the RBC are incubated with colloidal iron hydroxide at concentrations higher than 10 µM of Fe3+. Overall, these results show that the intact human RBC is prone to oxidative stress when exposed to Fe3+ and that the RBC has a potent antioxidant system that can minimize the potential damage caused by acute exposure to a colloidal iron hydroxide in vitro.
Resumo:
The effect of D002, a defined mixture of higher primary alcohols purified from bee wax, on in vivo and in vitro lipid peroxidation was studied. The extent of lipid peroxidation was measured on the basis of the levels of thiobarbituric acid reactive substances (TBARS). When D002 (5-100 mg/kg body weight) was administered orally to rats for two weeks, a partial inhibition of the in vitro enzymatic and non-enzymatic lipid peroxidation was observed in liver and brain microsomes. Maximal protection (46%) occurred at a dose of 25 mg/kg. D002 behaved differently depending on both the presence of NADPH and the integrity of liver microsomes, which suggests that under conditions where microsomal metabolism was favored the protective effect of D002 was increased. D002 (25 mg/kg) also completely inhibited carbon tetrachloride- and toluene-induced in vivo lipid peroxidation in liver and brain. Also, D002 significantly lowered in a dose-dependent manner the basal level of TBARS in liver (19-40%) and brain (28-44%) microsomes. We conclude that the oral administration of D002 (5, 25 and 100 mg/kg) for two weeks protected rat liver and brain microsomes against microsomal lipid peroxidation in vitro and in vivo. Thus, D002 could be useful as a dietary natural antioxidant supplement. More studies are required before these data can be extrapolated to the recommendation for the use of D002 as a dietary antioxidant supplement for humans.
Resumo:
The uptake of lipids and lipoprotein particles by macrophages undergoes phagocytic activation and the formation of foam cells are key events in atherosclerosis. In this study we determined how intact high density lipoproteins (HDL) and apolipoproteins-HDL (removal of the lipid component from HDL, i.e., apoHDL) influence the phagocytosis of zymosan by mouse peritoneal macrophages. Zymosan particles preincubated together with lipoproteins or alone (control) were incubated with the macrophages. Phagocytosis activity was reported as the percent of macrophages that internalized three or more zymosan particles. HDL co-incubated with zymosan did not influence the over-all uptake of zymosan particles compared to apoHDL, which greatly enhanced the ability of the particle to be phagocytized (P<0.001). Part of this effect might be related to a greater binding of apoHDL to the particles compared to that of HDL (P<0.05). We conclude that this can be a useful method to study the ability of lipoproteins, including modified lipoproteins obtained from subjects with genetic forms of hyperlipidemia, to opsonize particles such as red blood cells and thus to investigate the processes that control the formation of foam cells and the mechanisms of atherogenesis.
Resumo:
2-Hydroxybutyric acid appears at high concentrations in situations related to deficient energy metabolism (e.g., birth asphyxia) and also in inherited metabolic diseases affecting the central nervous system during neonatal development, such as "cerebral" lactic acidosis, glutaric aciduria type II, dihydrolipoyl dehydrogenase (E3) deficiency, and propionic acidemia. The present study was carried out to determine the effect of 2-hydroxybutyric acid at various concentrations (1-10 mM) on CO2 production and lipid synthesis from labeled substrates in cerebral cortex of 30-day-old Wistar rats in vitro. CO2 production was significantly inhibited (30-70%) by 2-hydroxybutyric acid in cerebral cortex prisms, in total homogenates and in the mitochondrial fraction. We also demonstrated a significant inhibition of lipid synthesis (20-45%) in cerebral cortex prisms and total homogenates in the presence of 2-hydroxybutyric acid. However, no inhibition of lipid synthesis occurred in homogenates free of nuclei and mitochondria. The results indicate an impairment of mitochondrial energy metabolism caused by 2-hydroxybutyric acid, a fact that may secondarily lead to reduction of lipid synthesis. It is possible that these findings may be associated with the neuropathophysiology of the situations where 2-hydroxybutyric acid is accumulated.
Resumo:
Cancer cachexia causes disruption of lipid metabolism. Since it has been well established that the various adipose tissue depots demonstrate different responses to stimuli, we assessed the effect of cachexia on some biochemical and morphological parameters of adipocytes obtained from the mesenteric (MES), retroperitoneal (RPAT), and epididymal (EAT) adipose tissues of rats bearing Walker 256 carcinosarcoma, compared with controls. Relative weight and total fat content of tissues did not differ between tumor-bearing rats and controls, but fatty acid composition was modified by cachexia. Adipocyte dimensions were increased in MES and RPAT from tumor-bearing rats, but not in EAT, in relation to control. Ultrastructural alterations were observed in the adipocytes of tumor-bearing rat RPAT (membrane projections) and EAT (nuclear bodies).