225 resultados para IMMUNE CHALLENGE
Resumo:
Soluble antigens from epimastigotes of Trypanosoma cruzi were analyzed by western blot in terms of their reactivity with sera from patients with Chagas' disease. In addition, sera from patients with visceral (AVL) and tegumentar leishmaniasis (ATL) were also tested in order to identify cross-reactivities with Trypanosoma cruzy antigens. Twenty eight polypeptides with molecular weights ranging from 14 kDa to 113 kDa were identified with sera from Chagas' disease patients. An extensive cross-reactivity was observed when sera from human visceral leishmaniasis were used, while only a slight cross-reaction was observed with sera from tegumentar leishmaniasis. On the other hand, 10 polypeptidesspecifically reacting with sera from Chagas' disease patients were identified. Among them, the antigens with molecular weights of 46 kDa and 25 kDa reacted with all sera teste and may be good candidates for specific immunodiagnosis of Chagas' disease.
Resumo:
Experimental evidence indicates that immune effector mechanisms can enhance the activity of schistosomicidal drugs. Praziquantel, oxamniquine, hycanthone and antimony were less effective against Schistosoma mansoni infections in mice immunosuppressed by T cell-deprivation, than against comparable infection in normal mice. The schistosomicidal activities of praziquantel, oxamniquine and antimony have been experimentally enhanced by the synergistic action of immune sera. In passive serum transfer experiments a s. mansoni antigen of Mr 27 kD with non-specific esterase activity was identified as a potentially sensitive target for the antibodies that interact with praziquantel. Indirect immunofluorescence indicated that this antigen was exposed on the worm surface as a result of praziquantel treatment.
Resumo:
The cellular immune response to the circumsporozoite (CS) protein of plasmodium vivax of individuals from malaria-endemic areas of Brazil was studied. We examined the in vitro proliferative response of the peripheral blood mononuclear cells (PBMC) of 22 individuals when stimulated with a CS recombinant protein (rPvCS-2) and two other synthetic peptides based on the sequenceof the P. vivax CS protein. Seven of the individuals from malaria-endemic area displayed an antigen specific in vitro proliferative responseto the recombinant protein PvCS-2 and one out of 6, proliferative response to the peptide 308-320. In contrast, none of the individuals displayed a proliferative reponse when stimulated with the D/A peptide which represent some of the repeated units present in this CS protein. Our study, therefore, provides evidence for the presence, withinthe major surface antigen of P. vivax sporozoites, of epitopes capble to induce proliferation of human PBMC.
Resumo:
Uruguay is situated in a marginal area for the development of Boophilus microplus (30- 35- South Lat.) with important areas of enzootic instability for Babesia bovis and B. bigemina. The livestock products represent 70% of our exports, for wich reason it is fundamental to evaluate the losses in the production that these haemoparasites cause as basic information to take future decisions. In the period 1988-1990, several works were carried out by our laboratory to know the incidence of babesiosis in the reduction of liveweight gains. The results are shown and discussed in the work. Experiment I: the weight increase of the control group (x = 0,248kg/day), was 23% higher than that of the infected group with Babesia spp (from Uruguay), but significant statistical differences were not found (P < 0,05). These animals were kept in boxes and the food was controlled for 76 days. Experiment II: the incidence of Babesis spp (same strain ) was studied for 140 on Hereford heifers (n = 14) on natural pastures. The control group obtained x = 25,29kg of liveweight gain and it was 45% higher than that of the infected group, significant statistical difference were found (P < 0,05). Experiments with attenuated strains III: four studies were carried out inoculating B. bovis and B. bigemina in bovines about one year old, in different growth systems, searching for the limit of application. Significant statistical differences between those groups were found during the experiment (about 180 days) (P < 0,05). Experiment combining and pathogenic strains IV: the liveweight gain, in immune and challanged group (n = 14) was the same than that of the unchallenged group and did not show significant statistical differences (P < 0,05). However the control challenged group had less weight gain and statistical differences were found (P < 0,05). Although this is a preliminary information, it shows that: (a) the incidence of babesiosis on the reduction of weight gains is important; (b) the decrease in weight gain was not observed when attenuated strains were used; when the challenge was done in immunized animals, losses in liveweight gain were not observed. These results are discussed in order to plan future studis in different real systems of production.
Resumo:
Malaria transmission-blocking immunity has been studied in natural malaria infections in man, during infections in animals and following artificial immunization of animals with sexual stage malaria parasites. Effective immunity, which prevents infectivity of a malarial infection to mosquitoes, has been observed under all of these circumstances. Two general types of effector mechanism have been identified. One is an antibody mediated mechanism which acts against the extracellular sexual stages of the parasite within the midgut of a blood feeding mosquito. The other is a cytokine mediated mechanism which inactivates the gametocytes of the parasites while in the circulation of the vertebrate host. Both effects have been observed during natural infections and following artificial immunization. The basis of induction of transmission-blocking immunity, including the nature of the memory for such immunity, however, may be very different in different host/parasite systems and during natural infection of following artificial immunization. Following artificial immunization a strong immune memory for transmission blocking immunity has been observed in animal systems. By contrast, following natural infections in man immune memory for transmission blocking immunity has been found to be weak and short lived if it occurs at all. It is suggested that the immunogens which induce natural transmission blocking immunity may be CD4+ independent.
Resumo:
The design of malarial vaccine based on the circumsporozoite (CS) protein, a majuor surface antigen of the sporozoite stage of the malaria parasite, requires the identification of T and B cell epitopes for inclusion in recombinant or synthetic vaccine candidates. We have investigated the specificity and function of a series of T cell clones, derived from volunteers immunized with Plasmodium falciparum sporozoites in an effort to identify relevant epitopes in the immune response to the pre-erythrocytic stages of the parasite. CD4+ T cell clones were obtained wich specifically recognized a repetitive epitope located in the 5'repeat region of the CS protein. This epitope, when conjugated to the 3'repeat region in a synthetic MAPs construct, induced high titers of antisporozoite antibodies in C57B1 mice. A second T cell epitope, which mapped to aa 326-345 of the carboxy terminal, was recognized by lytic, as well as non-lytic, CD4+ T cells derived from the sporozoite-immunized volunteers. The demonstration of CD4+ CTL in the volunteers, and the recent studies inthe rodent model (Renia et al., 1991; Tsuji et al., 1990), suggested that CS-specific CD4+ T cells, in addition to their indirect role as helper cells in the induction of antibody and CD8 + effector cells, may also play a direct role in protection against sporozoite challenge by targeting EEF within the liver.
Resumo:
The dysregulation of the immune response by malaria parasite has been considered as a possible constraint to the effectiveness of malaria vaccination. In spite of the important role interleukin-I (IL-1) in malaria are lacking. We found that only 2 out of 35 subjectswith acute malaria showed increased levels of serum IL-1 alpha by enzyme immunoassay. To assess whether IL-1 could interfere with T- lymphocyte responses, blood mononuclear cells from patients infected with Plasmodium falciparum, P. vivax, or healthy subjects were cultured with phytohemagglutinin, and lymphocyte proliferation measured 72h later by 3H-thymidine incorporation. Our data showed that T-lymphocyte responses are depressed both in P. falciparum (10,500 ñ 2,900) and P. vivax malaria (13,000 ñ 3,300), as compared to that of healthy individuals (27,000 ñ 3,000). Addition of IL-1 partially reserved depression of malaria lymphocytes, but had no effect on normal cells. On the other hand, T-lymphocytes from malaria infected-subjects presented a minimal decrease in proliferation, when cultured in the presence of exogenous PGE2. These data indicate the occurrence of two defects of immunoregulation in malaria: a deficiency of IL-1 production by monocytes/macrophages, and an increased resistance of lymphocytes to the antiproliferative effect of PGE2.
Resumo:
Six Plasmodium falciparum protein fractions, isolated under reducing conditions, were used to immunize mice, rabbits and the squirrel monkey Saimiri sciureus. Five or seven subcutaneous injections of each antigenic preparation, in conjunction with Freund's complete or incomplete adjuvants, were administered. This led to the development of specific antibodies detected by IFAT, ELISA or immunobloting which inhibited merozoite reinvasion in in vitro P. falciparum cultures. This activity seems to be associated with rhoptry proteins contained in fractions Pf F2 and Pf F4.
Resumo:
Previous evidences reported by us and by other authors revealed the presence of IgG in sera of Schistosoma mansoni-infected patients to immunodominant antigens which are enzymes. Besides their immunological interest as possible inductors of protection, several of these enzume antigens might be also intersting markers of infection in antibody-detecting immunocapture assays which use the intrinsic catalytic property of these antigens. It was thus thought important to define some enzymatic and immunological characteristics of these molecules to better exploit their use as antigens. Four different enzymes from adult worms were partially characterized in their biochemical properties and susceptibility to react with antibodies of infected patients, namely alkaline phosphatase (AKP, Mg*+, pH 9.5), type I phosphodiesterase (PDE, pH 9.5), cysteine proteinase (CP, dithiothreitol, pH 5.5) and N-acetyl-ß-D-glucosaminidase (NAG, pH 5.5). The AKP and PDE are distinct tegumental membrane-bound enzymes whereas CP and NAG are soluble acid enzymes. Antibodies in infected human sera differed in their capacity to react with and to inhibit these enzyme antigens. Possibly, the specificity of the antibodies related to the extent of homology between the parasite and the host enzyme might be in part responsible for the above differences. The results are also discussed in view of the possible functional importance of these enzymes.