160 resultados para Catalyst deactivation
Resumo:
This study presents Pd determinations in bovine tissue samples containing palladium prepared in the laboratory, and CCQM-P63 automotive catalyst materials of the Proficiency Test, using instrumental thermal and epithermal neutron activation analysis and energy dispersive X-ray fluorescence techniques. Solvent extraction and solid phase extraction procedures were also applied to separate Pd from interfering elements before the irradiation in the nuclear reactor. The results obtained by different techniques were compared against each other to examine sensitivity, precision and accuracy.
Resumo:
The main topics related to the use of dual-site catalysts in the production of polymers with broad molecular weight distribution are reviewed. The polymerization using dual-site catalysts is more economical and allows to produce a higher quality product than other processes, such as polymer blend and multistage reactors. However, the formulation of these catalysts is quite complicated since the same catalyst must produce distinct polymer grades. In addition, the release of patents concerning the combination of metallocenes and new technologies for polymerization shows that polymerization processes using dual-site catalysts are of current industrial interest.
Resumo:
Vanadium oxide supported on hydrotalcite-type precursors was studied in the decomposition of isopropanol. Hydrotalcite-type compounds with different y = Mg+2/Al+3 ratios were synthesized by the method of coprecipitating nitrates of Mg+2 and Al+3 cations with K2CO3 as precipitant. The X-ray diffraction patterns of Al-rich hydrotalcite precursors showed the presence of crystalline phases of brucite and gibbsite. It was shown that chemical composition, texture, acid-base properties of the active sites and also Mg/Al ratio strongly affect the formation of the products in the oxidation of isopropanol. The Al-rich catalysts were much more active than the Mg-rich ones, converting isopropanol mainly to propylene.
Resumo:
The development and characterization of bioreactors or IMER (immobilized enzyme reactors) as research tools are important in the scope of medicinal chemistry and constitute an alternative for the rational development of drugs. This approach does not require highly purified enzymes or a great amount of protein, but increase the enzymatic stability against heat, organic solvents and pH, without too much loss of catalyst activity. Immobilized enzyme reactors (IMER) can be used for the accomplishment of high efficiency screening on-line and, thus inhibitors can be quickly identified. Here, we emphasize the development of IMER by use of different methods of immobilization and chromatographic supports. Their applications, in different areas of research, are also fully discussed.
Resumo:
Chemical interesterification is an important alternative to produce zero trans fats. In practice, however, excessive reaction times are used to ensure complete randomization. This work evaluated the influence of the reaction time on the interesterification of soybean oil/fully hydrogenated soybean oil blend, carried out in the following conditions: 100 ºC, 500 rpm stirring speed, 0.4% (w/w) sodium methoxide catalyst. The triacylglycerol composition, solid fat content and melting point analysis showed that the reaction was very fast, reaching the equilibrium within 5 min. This result suggests the interesterification can be performed in substantially lower times, with reduction in process costs.
Resumo:
In this work, the perovskite-type oxides LaNiO3, LaMnO3, La0,7Sr0,3NiO3 and La0,7Sr0,3MnO3 were prepared by co-precipitation and tested in the NO reduction with CO at 400 and 500 ºC for 10 h. The catalysts were characterized by X-ray diffraction, temperature programmed reduction with hydrogen, nitrogen adsorption and chemical analysis. The nonstoichiometric oxygen was quantified by temperature programmed reduction, and the catalytic tests showed that the La0,7Sr0,3MnO3 catalyst presented the higher performance for the reduction reaction of NO with CO. The partial substitution of lanthanum by strontium increased the NO conversion and the N2 yield.
Resumo:
Bisphenol A (BPA) is a monomer used in epoxy resin and polycarbonate manufacture. This molecule is considered as an endocrine disruptor that causes different diseases. The human exposition to this non biodegrable substance is increasing in the time; in particular, water is contaminated by industrial remainder flow. In this article heterogeneous photo degradation of a solution of BPA in water solution using a catalytic photo reactor with UV light and titanium dioxide (TiO2) was evaluated. High performance liquid chromatography (HPLC) was used to analyze the photo degradation of BPA solutions. The influence of titanium dioxide amount, BPA concentration, reaction temperature and the catalyst state like suspension and immobilized were also determinated. The highest elimination of BPA was 83.2%, in 240 min, beginning with 0.05 mM of BPA and 100 mg/L of TiO2 in suspension.
Resumo:
In this work synthetic niobia was used to promote the oxidation of methylene blue dye in aqueous medium. The niobia was characterized by N2 adsorption/desorption, XRD and TG measurements. The presence of reactive species on the niobia surface strongly increased the oxidation rate of the methylene blue dye. The reaction mechanism was studied by ESI-MS suggesting that the oxidation of the organic dye involve oxidizing species generated mainly after previous treatment with H2O2. It can be observed that the catalyst is a good material in the activation of gas (atmospheric oxygen) or liquid (hydrogen peroxide) oxidant agent with a total discoloration of the dye solution after only 1 h of reaction.
Resumo:
Offretite T zeolite was synthesized using different source of Si (Ludox AS-30, Ludox LS-30 and Aerosil 200 Degussa). The obtained materials were characterized by different complementary techniques: XRD, textural analysis by N2 adsorption, IV, SEM and chemistry analysis. This zeolite has an intermediary structure between offretite and erionite zeolites. In all experiments offretite T phase was obtained. Offretite phase presenting better crystalility are obtained in synthesis with stirring and employing aerosil as silicon source. This zeolite presents a potencial application as catalyst for hydroisodewaxing process.
Resumo:
A laboratory experiment that enables the professor to introduce the problematic of sustainable development in pharmaceutical chemistry to undergraduate students is proposed, using a simple synthetic procedure. Cholesteryl acetate is prepared by the esterification of cholesterol using Montmorillonite K10 as heterogeneous catalyst. Cholesterol and cholesteryl acetate are characterized by spectroscopic (¹H RMN, 13C RMN, FTIR) and thermal analysis techniques. The thermal methods are used to introduce the concepts of polymorphism and the nature of mesophases.
Resumo:
Isoamyl butyrate production was investigated using free and immobilized lipases by esterification of butyric acid with isoamyl alcohol in a solvent-free system and in an organic media. Among the enzymes studied, Lipozyme TL IM was found to be the most active catalyst in n-hexane as a solvent. The effects of different solvents and the amount of water added on conversion rates were studied. A maximum conversion yield of 80% in n-hexano at 48 h was obtained under the following conditions: 3 g L-1 of Lipozyme TL IM, 30 ºC, 180 rpm of agitation, isoamyl alcohol to butyric acid molar ratio of 1:1 and acid substrate concentration of 0.06 M.
Resumo:
The catalytic performance of Mg,Al-mixed oxides (MO20, MO25 and MO33) derived from hydrotalcites was evaluated in the Knoevenagel reaction between benzaldehyde and phenylsulfonylacetonitrile at 373 and 383 K. The best results were obtained for the sample MO20 that presented the highest basic sites density and external area and the smallest crystallite sizes. The relative amount of basic sites with weak to intermediate strength also played an important role on catalytic performance. By increasing the catalyst content from 1 to 5 wt.% at 383 K, a complete conversion of the reactants is attained, producing α-phenylsulfonylcinnamonitrile with a selectivity of 100%.
Resumo:
A series of Group VIII metal catalysts was obtained for the semi-hydrogenation of styrene. Catalysts were characterized by Hydrogen Chemisorption, TPR and XPS. Palladium, rhodium and platinum low metal loading prepared catalysts presented high activity and selectivity (ca. 98%) during the semi-hydrogenation of styrene, being palladium the most active catalyst. The ruthenium catalyst also presented high selectivity (ca. 98%), but the lowest activity. For the palladium catalyst, the influence of the precursor salt and of the reduction temperature on the activity and selectivity were studied. The following activity series was obtained: PdN-423 > PdCl-673 > PdCl-373> PtCl-673 > RhCl-673 >> RuCl-673. As determined by XPS, differences in activity could be attributed, at least in part, to electronic effects.
Resumo:
The synthesis of fine chemicals intermediates using Friedel-Crafts acylation is one of the most important methods in chemical technology. In this work, the acylation of 2-methoxynaphthalene with acetic anhydride using a silica-supported dodecatungstophosphoric acid catalyst (HPW/SiO2) and acetonitrila as solvent was studied, showing that this reaction is a feasible alternative to produce intermediaries to replace the current methods of production. The reactions using acetonitrile solvent showed yields greater than or equal to the reactions using traditional solvents such as nitrobenzene and dichloroethane. Finally, the modified Eley-Rideal mechanism was proposed to elucidate the experimental data obtained.
Resumo:
In this work, the oxidation of methylene blue textile dye in the presence of hydrogen peroxide, using niobium oxide impregnated with different proportions of tin (1, 5 and 10% in mass) as catalyst was studied. The materials were characterized by TPR, XPS, XRD and FTIR. The oxidation tests monitored by ESI-MS showed that the composite containing the higher amount of tin was the most efficient in the removal of the dye. The XRD, XPS, and TPR data presented evidence of the formation of the tin-niobium oxide composite containing Sn0 and supported SnO2.