211 resultados para CHROMAGAR CANDIDA
Resumo:
AbstractINTRODUCTION:Candida parapsilosis is a common yeast species found in cases of onychomycosis and candidemia associated with infected intravascular devices. In this study, we differentiated Candida parapsilosis sensu stricto, Candida orthopsilosis , and Candida metapsilosis from a culture collection containing blood and subungual scraping samples. Furthermore, we assessed the in vitro antifungal susceptibility of these species to fluconazole, itraconazole, voriconazole, posaconazole, amphotericin B, and caspofungin.METHODS:Differentiation of C. parapsilosis complex species was performed by amplification of the secondary alcohol dehydrogenase (SADH) gene and digestion by the restriction enzyme Ban I. All isolates were evaluated for the determination of minimal inhibitory concentrations using Etest, a method for antifungal susceptibility testing.RESULTS:Among the 87 isolates, 78 (89.7%) were identified as C. parapsilosis sensu stricto , five (5.7%) were identified as C. orthopsilosis , and four (4.6%) were identified as C. metapsilosis . Analysis of antifungal susceptibility showed that C. parapsilosis sensu strictoisolates were less susceptible to amphotericin B and itraconazole. One C. parapsilosis sensu stricto isolate was resistant to amphotericin B and itraconazole. Moreover, 10.2% of C. parapsilosis sensu stricto isolates were resistant to caspofungin. Two C. parapsilosis sensu strictoisolates and one C. metapsilosis isolate were susceptible to fluconazole in a dose-dependent manner.CONCLUSIONS:We reported the first molecular identification of C. parapsilosiscomplex species in State of Goiás, Brazil. Additionally, we showed that although the three species exhibited differences in antifungal susceptibility profiles, the primary susceptibility of this species was to caspofungin.
Resumo:
Estudou-se o comportamento de leveduras do gênero Candida a antifungicos, pela determinação da Concentração Inibitória Mínima (CIM) e da Concentração Fungicida Mínima (CFM) "in vitro"de 30 cepas de Candida frente aos antifungicos: miconazol, cetoconazol e anfotericina B. Empregou-se o método de diluição em meio líquido e os antifungicos foram diluídos visando proporcionar concentrações a partir de 0,06 a 128 μg/mL. O inóculo foi padronizado ajustando-se a suspensão para conter 1X 106 ufc/mL. A concentração para a qual houve maior convergência de cepas foi de 1 μg/mL (26,5%) para anfotericina B. Para miconazol foi de 16 μg/mL (26,0%) e para cetoconazol 32 μg/mL (23,0%). Os valores de CFM foram de 2 μg/mL (23,5%) para anfotericina B, de 16 e 64 μg/mL (26,5%) para miconazol e 32 e 64 μg/mL (30,0%) para cetoconazol. Este imidazólico mostrou os valores de CIM e CFM mais elevados atingindo até 128 μg/mL em algumas espécies. As espécies de Candida mostraram-se mais sensíveis à Anfotericina B, quando comparadas em relação aos antifungicos testados. Sobre o desempenho das espécies de Candida, melhor padrão de comportamento foi verificado para C. albicans com níveis mais baixos de sensibilidade.
Resumo:
A specific antiserum to Candida albicans serotype A was prepared adsorbing a total antiserum with Candida albicans serotype B cells. This specific antiserum was used for serotyping C. albicans strains obtained from patients in different hospitals of Havana City, Cuba. Two hundred strains (95.2%) were serotype A, the remaining 10 (4.8%) were serotype B. Results were also correlated with strains isolated from the specimen origin, sex and race of the patient. The usefulness of this specific antiserum to determine C. albicans serotypes and its therapeutic value are pointed out.
Resumo:
Electrophoretic studies of multilocus-enzymes (MLEE) and whole-cell protein (SDS-PAGE) were carried out in order to evaluate the parity between different methods for the characterization of five Candida species commonly isolated from oral cavity of humans by numerical taxonomy methods. The obtained data revealed that sodium dodecyl sulfate polyacrylamide gel electrophoresis is more efficient in grouping strains in their respective species while MLEE has much limited resolution in organizing all strains in their respective species-specific clusters. MLEE technique must be regarded for surveys in which just one species of Candida is involved.
Resumo:
A total of 106 women with vaginitis in Nicaragua were studied. The positive rate for the identification of Candida species was 41% (44 positive cultures out of 106 women with vaginitis). The sensitivity of microscopic examination of wet mount with the potassium hydroxide (KOH) was 61% and 70% with Gram's stain when using the culture of vaginal fluid as gold standard for diagnosis of candidiasis. Among the 44 positives cultures, isolated species of yeast from vaginal swabs were C. albicans (59%), C. tropicalis (23%), C. glabrata (14%) and C. krusei (4%). This study reports the first characterization of 26 C. albicans stocks from Nicaragua by the random amplified polymorphic DNA method. The genetic analysis in this small C. albicans population showed the existence of linkage disequilibrium, which is consistent with the hypothesis that C. albicans undergoes a clonal propagation.
Resumo:
From March 1999 to March 2000, we conducted a prospective multicenter study of candidemia involving five tertiary care hospitals from four countries in Latin America. Yeast isolates were identified by classical methods and the antifungal susceptibility profile was determined according to the National Committee for Clinical Laboratory Standards microbroth assay method. During a 12 month-period we were able to collect a total of 103 bloodstream isolates of Candida spp. C. albicans was the most frequently isolated species accounting for 42% of all isolates. Non-albicans Candida species strains accounted for 58% of all episodes of candidemia and were mostly represented by C. tropicalis (24.2%) and C. parapsilosis (21.3%). It is noteworthy that we were able to identify two cases of C. lusitaniae from different institutions. In our casuistic, non-albicans Candida species isolates related to candidemic episodes were susceptible to fluconazole. Continuously surveillance programs are needed in order to identify possible changes in the species distribution and antifungal susceptibility patterns of yeasts that may occurs after increasing the use of azoles in Latin American hospitals.
Resumo:
We investigated the presence of Candida dubliniensis among isolates previously identified as Candida albicans and maintained in a yeast stock collection from 1994 to 2000. All isolates were serotyped and further evaluated for antifungal susceptibility profile. After doing a screening test for C. dubliniensis isolates based on the capability of colonies to grow at 42°C, its final identification was obtained by randomly amplified polymorphic DNA (RAPD) analysis using three different primers. A total of 46 out of 548 screened isolates did not exhibit growth at 42°C and were further genotyped by RAPD. Eleven isolates were identified as C. dubliniensis with RAPD analysis. Regarding serotypes, 81.5% of C. albicans and all C. dubliniensis isolates belonged to serotype A. Of note, 9 out of 11 C. dubliniensis isolates were obtained from patients with acquired immunodeficiency syndrome (Aids) and all of them were susceptible to azoles and amphotericin B. We found 17 (3%) C. albicans isolates that were dose-dependent susceptibility or resistant to azoles. In conclusion, we found a low rate of C. dubliniensis isolates among stock cultures of yeasts previously identified as C. albicans. Most of these isolates were recovered from oral samples of Aids patients and exhibited high susceptibility to amphotericin B and azoles. C. albicans serotype A susceptible to all antifungal drugs is the major phenotype found in our stock culture.
Resumo:
The aim of this study was to evaluate the use of one of the molecular typing methods such as PCR (polymerase chain reaction) following by RFLP (restriction fragment length polymorphism) analysis in the identification of Candida species and then to differentiate the identified azole susceptible and resistant Candida albicans strains by using AP-PCR (arbitrarily primed-polymerase chain reaction). The identification of Candida species by PCR and RFLP analysis was based on the size and primary structural variation of rDNA intergenic spacer regions (ITS). Forty-four clinical Candida isolates comprising 5 species were included to the study. The amplification products were digested individually with 3 different restriction enzymes: HaeIII, DdeI, and BfaI. All the isolates tested yielded the expected band patterns by PCR and RFLP analysis. The results obtained from this study demonstrate that Candida species can be differentiated as C. albicans and non-C. albicans strains only by using HaeIII restriction enzyme and BfaI maintains the differentiation of these non-C. albicans species. After identification Candida species with RFLP analysis, C. albicans strains were included to the AP-PCR test. By using AP-PCR, fluconazole susceptible and resistant strains were differentiated. Nine fluconazole susceptible and 24 fluconazole resistant C. albicans were included to the study. Fluconazole resistant strains had more bands when evaluating with the agarose gel electrophoresis but there were no specific discriminatory band patterns to warrant the differentiation of the resistance. The identification of Candida species with the amplification of intergenic spacer region and RFLP analysis is a practical, short, and a reliable method when comparing to the conventional time-consuming Candida species identification methods. The fluconazole susceptibility testing with AP-PCR seems to be a promising method but further studies must be performed for more specific results.
Resumo:
The patterns of genetic variation of samples of Candida spp. isolated from patients infected with human immunodeficiency virus in Vitória, state of Espírito Santo, Brazil, were examined. Thirty-seven strains were isolated from different anatomical sites obtained from different infection episodes of 11 patients infected with the human immunodeficiency virus (HIV). These samples were subjected to randomly amplified polymorphic DNA (RAPD) analysis using 9 different primers. Reproducible and complex DNA banding patterns were obtained. The experiments indicated evidence of dynamic process of yeast colonization in HIV-infected patients, and also that certain primers are efficient in the identification of species of the Candida genus. Thus, we conclude that RAPD analysis may be useful in providing genotypic characters for Candida species typing in epidemiological investigations, and also for the rapid identification of pathogenic fungi.
Resumo:
One of the main opportunistic fungal infections amongst immunocompromised individuals is oral candidosis, which has been found in up to 90% of human immunodeficiency virus (HIV)-infected patients. This study employed yeasts isolated from the saliva and oral cavities of 114 HIV-infected patients living in Campinas, São Paulo. Of the isolates, 57.8% were identified as Candida albicans and 42.1% as non-C. albicans. The latter isolates were subsequently identified as C. krusei (7.5%), C. lusitaniae (5.2%), C. tropicalis (4.6%), C. parapsilosis (4.6%), C. glabrata (2.8%), C. kefyr (1.7%), C. guilliermondii (1.7%), C. intermedia (1.1%), C. norvegensis (0.5%), and Rhodotorula rubra (1.7%). Susceptibility of the isolates to amphotericin B, fluconazole, miconazole, and itraconazole was also determined by a microdilution method adopted by the National Committee for Clinical Laboratory Standards. The isolates demonstrated various susceptibilities to the antifungal agents. In particular 29 C. albicans and 13 non-C. albicans isolates showed low susceptibility to FLCZ (> 64 µg/ml). This study revealed huge diversity of Candida species, in particular the increasing emergence of non-C. albicans associated with the oral flora of HIV-infected patients.
Resumo:
Slime and proteinase activity of 54 strains consisting of 19 Candida parapsilosis and 35 C. albicans strains isolated from blood samples were investigated in this study. Ketoconazole, amphothericin B, and fluconazole susceptibility of Candida species were compared with slime production and proteinase activity of these species. For both Candida species, no correlation was detected between the slime activity and minimum inhibitory concentration (MIC) values of the three antifungal agents. For both Candida species no correlation was detected between the proteinase activity and the MIC values of amphothericin B, and fluconazole however, statistically significant difference, was determined between the proteinase activity and MIC values of ketoconazole (p = 0.007). Slime production was determined by using modified Christensen macrotube method and proteinase activity was measured by the method of Staib. Antifungal susceptibility was determined through the guidelines of National Committee for Laboratory Standards (NCCLS M27-A).
Resumo:
Until recently, morphotyping, a method evaluating fringe and surface characteristics of streak colonies grown on malt agar, has been recommended as a simple and unexpensive typing method for Candida albicans isolates. The discriminatory power and reproducibility of Hunter's modified scheme of Phongpaichit's morphotyping has been evaluated on 28 C. albicans isolates recovered from the oral cavity of asymptomatic human immunodeficiency virus-positive subjects, and compared to two molecular typing methods: randomly amplified polymorphic DNA (RAPD) fingerprinting, and contour clamped homogeneous electric field (CHEF) electrophoretic karyotyping. Morphological features of streak colonies allowed to distinguish 11 different morphotypes while RAPD fingerprinting yielded 25 different patterns and CHEF electrophoresis recognized 9 karyotypes. The discriminatory power calculated with the formula of Hunter and Gaston was 0.780 for morphotyping, 0.984 for RAPD fingerprinting, and 0.630 for karyotyping. Reproducibility was tested using 43 serial isolates from 15 subjects (2 to 6 isolates per subject) and by repeating the test after one year storage of the isolates. While genetic methods generally recognized a single type for all serial isolates from each of the subjects studied, morphotyping detected strain variations in five subjects in the absence of genetic confirmation. Poor reproducibility was demonstrated repeating morphotyping after one year storage of the isolates since differences in at least one character were detected in 92.9% of the strains.
Resumo:
The objective of this study was to identify possible predisposing factors for candiduria in intensive care unit (ICU) patients from Hospital das Clínicas, Universidade Federal de Goiás, Goiânia, Brazil, during one year. Urine samples from 153 ICU patients were obtained by catheterization on admission day and every seven days. Data such as sex, age, antifungal therapy, and variables as antibiotics, underlying diseases or comorbid conditions and stay in the hospital, were collected from patients who had at least one urine culture that yielded > 10³ yeast colonies/ml. Candiduria was recovered in 68 patients and the commonest predisposing factors were antibiotic therapy (100%) and indwelling urinary catheter (92.6%). The percentage of Candida spp. isolation increased during the extended periods in which patients remained in the ICU. C. albicans was isolated in 69.1%, and the other species non-albicans as C. glabrata, C. kefyr, C. parapsilosis, C. famata, C. guilliermondii, C. krusei, and C. tropicalis were isolated in lower percentage. The high frequency of candiduria and the possible predisposing factors found in ICU patients show that candiduria surveillance should be performed to help reducing nosocomial infections.
Resumo:
Protein glycosylation pathways, commonly found in fungal pathogens, offer an attractive new area of study for the discovery of antifungal targets. In particular, these post-translational modifications are required for virulence and proper cell wall assembly in Candida albicans, an opportunistic human pathogen. The C. albicans MNS1 gene is predicted to encode a member of the glycosyl hydrolase family 47, with 1,2-mannosidase activity. In order to characterise its activity, we first cloned the C. albicans MNS1 gene into Escherichia coli, then expressed and purified the enzyme. The recombinant Mns1 was capable of converting a Man9GlcNAc2 N-glycan core into Man8GlcNAc2 isomer B, but failed to process a Man5GlcNAc2-Asn N-oligosaccharide. These properties are similar to those displayed by Mns1 purified from C. albicansmembranes and strongly suggest that the enzyme is an ±1,2-mannosidase that is localised to the endoplasmic reticulum and involved in the processing of N-linked mannans. Polyclonal antibodies specifically raised against recombinant Mns1 also immunoreacted with the soluble ±1,2-mannosidases E-I and E-II, indicating that Mns1 could share structural similarities with both soluble enzymes. Due to the high degree of similarity between the members of family 47, it is conceivable that these antibodies may recognise ±1,2-mannosidases in other biological systems as well.
Resumo:
Aspartyl proteases are a class of enzymes that include the yeast aspartyl proteases and secreted aspartyl protease (Sap) superfamilies. Several Sap superfamily members have been demonstrated or suggested as virulence factors in opportunistic pathogens of the genus Candida. Candida albicans, Candida tropicalis, Candida dubliniensis and Candida parapsilosis harbour 10, four, eight and three SAP genes, respectively. In this work, genome mining and phylogenetic analyses revealed the presence of new members of the Sap superfamily in C. tropicalis (8), Candida guilliermondii (8), C. parapsilosis(11) and Candida lusitaniae (3). A total of 12 Sap families, containing proteins with at least 50% similarity, were discovered in opportunistic, pathogenic Candida spp. In several Sap families, at least two subfamilies or orthologous groups were identified, each defined by > 90% sequence similitude, functional similarity and synteny among its members. No new members of previously described Sap families were found in a Candida spp. clinical strain collection; however, the universality of SAPT gene distribution among C. tropicalis strains was demonstrated. In addition, several features of opportunistic pathogenic Candida species, such as gene duplications and inversions, similitude, synteny, putative transcription factor binding sites and genome traits of SAP gene superfamily were described in a molecular evolutionary context.