223 resultados para ALKALINE CELLULASES
Resumo:
Sulphur plays an essential role in plants and is one of the main nutrients in several metabolic processes. It has four stable isotopes (32S, 33S, 34S, and 36S) with a natural abundance of 95.00, 0.76, 4.22, and 0.014 in atom %, respectively. A method for isotopic determination of S by isotope-ratio mass spectrometry (IRMS) in soil samples is proposed. The procedure involves the oxidation of organic S to sulphate (S-SO4(2-)), which was determined by dry combustion with alkaline oxidizing agents. The total S-SO4(2-) concentration was determined by turbidimetry and the results showed that the conversion process was adequate. To produce gaseous SO2 gas, BaSO4 was thermally decomposed in a vacuum system at 900 ºC in the presence of NaPO3. The isotope determination of S (atom % 34S atoms) was carried out by isotope ratio mass spectrometry (IRMS). In this work, the labeled material (K2(34)SO4) was used to validate the method of isotopic determination of S; the results were precise and accurate, showing the viability of the proposed method.
Resumo:
ABSTRACT Preservation of mangroves, a very significant ecosystem from a social, economic, and environmental viewpoint, requires knowledge on soil composition, genesis, morphology, and classification. These aspects are of paramount importance to understand the dynamics of sustainability and preservation of this natural resource. In this study mangrove soils in the Subaé river basin were described and classified and inorganic waste concentrations evaluated. Seven pedons of mangrove soil were chosen, five under fluvial influence and two under marine influence and analyzed for morphology. Samples of horizons and layers were collected for physical and chemical analyses, including heavy metals (Pb, Cd, Mn, Zn, and Fe). The moist soils were suboxidic, with Eh values below 350 mV. The pH level of the pedons under fluvial influence ranged from moderately acid to alkaline, while the pH in pedons under marine influence was around 7.0 throughout the profile. The concentration of cations in the sorting complex for all pedons, independent of fluvial or marine influence, indicated the following order: Na+>Mg2+>Ca2+>K+. Mangrove soils from the Subaé river basin under fluvial and marine influence had different morphological, physical, and chemical characteristics. The highest Pb and Cd concentrations were found in the pedons under fluvial influence, perhaps due to their closeness to the mining company Plumbum, while the concentrations in pedon P7 were lowest, due to greater distance from the factory. For containing at least one metal above the reference levels established by the National Oceanic and Atmospheric Administration (United States Environmental Protection Agency), the pedons were classified as potentially toxic. The soils were classified as Gleissolos Tiomórficos Órticos (sálicos) sódico neofluvissólico in according to the Brazilian Soil Classification System, indicating potential toxicity and very poor drainage, except for pedon P7, which was classified in the same subgroup as the others, but different in that the metal concentrations met acceptable standards.
Resumo:
The aim of this work was to evaluate the humus composition from an Ultisol from Campos dos Goytacazes, RJ, Brazil. Soil samples of four depths (0-0.05, 0.05-0.10, 0.10-0.20 and 0.20-0.40 m) and its chemical nature were analysed by elemental composition, E4/E6 ratios and Fourier transformed infrared spectroscopy. The bioactivity of these humified substances was evaluated through their action on maize root growth and H+-ATPase activity of roots microsomes. In topsoil, the content of high condensed alkaline soluble humic substances is greater than that found in the subsuperficial layers. The chemical nature of humic and fulvic acids also varied with the soil depth. The humic acids isolated from the soil samples exhibited higher bioactivity compared with the fulvic acids. Moreover, the results suggest that more condensed humic substances can promote highest stimulation of the microsomal H+-ATPases from maize roots. These data reinforce the concept that the activity of the H+ pumps can be used as a biochemical marker for evaluation of humic substances bioactivity.
Resumo:
The availability and the reserves of organic phosphorus are controlled by its mineralization rate and are also influenced by changes in soil management. The objective of this study was to evaluate the influence of soil covering with different leguminous plant on soil organic P by 31P-NMR spectroscopy. Alkaline soil extracts were obtained from two depths (0-5 and 5-10 cm) of an Ultisol cultivated with herbaceous perennial leguminous plants (Arachis pintoi, Pueraria phaseoloides, Macroptilium atropurpureum). In an adjacent area, samples of the same soil cover with a secondary tropical forest and grass (Panicum maximum) were also collected. The leguminous management was divided into with removal and without removal of shoot parts after cut on soil surface. Phosphate monoesters are the dominant P species in all soil samples and P diesters accumulated on the superficial layer of secondary forest soil. The P amount of this fraction is higher for the legume covered soil when compared with the grass covered soil. The permanence of leguminous plants on the topsoil after the cut promoted an increase in P diester/P monoester ratios. These findings can be accounted for an enhancement of P availability to plants in soils cultivated with leguminous plants.
Resumo:
This study has shown that Eucalyptus tar and creosote can be used in phenolic adhesive formulations (resols) for wood products bonding. Some adhesives were prepared substituting 0; 17.7; 35.0 and 67.0% of the phenol by anhydrous tar and 0; 15.0 e 28.5% by creosote. In gluing Brazilian pine veneers, eucalypt tar and creosote based adhesives required longer pressing times for curing than conventional phenol-formaldehyde adhesives. By using 13C NMR, the number of carbons in side chains and hydroxyl, carbonyl, carboxyl and methoxyl groups related to 100 aromatic rings could be estimated in tar and creosote. In creosote, after reaction with excess formaldehyde in alkaline medium, only 0,28 hydroxymethyl groups was detected per phenolic ring. This low amount of hydroxymethylation explains the lack of reactivity in curing observed when creosote was introduced in a standard adhesive formulation.
Resumo:
This work describes the selective hydrolysis of carboxyamide groups of asparagine and glutamine of collagen matrices for the preparation of negatively charged collagen biomaterials. The reaction was performed in the presence of chloride and sulfate salts of alkaline and alkaline earth metals in aqueous dimethylsulfoxide solution and, selectively hydrolysis of carboxyamide groups of collagen matrices was promoted without cleavage of the peptide bond. The result is a new collagen material with controlled increase in negative charge content. Although triple helix secondary structure of tropocollagen was preserved, significative changes in thermal stabilities were observed in association with a new pattern of tropocollagen macromolecular association, particularly in respect microfibril assembly, thus providing at physiological pH a new type of collagen structure for biomaterial preparation, characterized by different charge and structural contents .
Resumo:
A simple spectrophotometric method is proposed for the determination of cefaclor. The method involves alkaline hydrolysis of the drug in ammonia buffer solution at pH 10 to yield diketopiperazine-2,5-dione derivative and subsequent measurement at 340 nm. Beer's law is obeyed in the concentration range 1.8 - 55 mg/mL. The proposed method was successfully applied to the determination of cefaclor in pharmaceutical formulations.
Resumo:
The solubility product value of SrO has been found to be equal to 10-4,2 (molality scale) in molten equimolar mixture of NaCl and KCl at 727ºC, using a potentiometric method involving a calcia stabilized zirconia membrane electrode. This value, which is in a logical agreement with other alkaline-earth oxide determined solubilities, is compared to those of 10-5,8, 10-3,0 and 10-3,08 (molality scale) found in the litterature 33, 22 and 5 years ago, respectively. Such discrepencies have called the attention of the authors, their possible reasons (methodology, titrating agent) are analyzed and a theoretical discussion, for considering the authors' value as more reliable, is given in this paper.
Resumo:
A study of the kinetics of oxygen evolution in alkaline conditions from ceramic films of Mn2O3 supported on stainless steel was carried out. This study has been done through the determination of transfer coefficients, Tafel slopes and exchange currents using potentiodynamic and quasi-potentiostatic measurements. The activation energy was determined as a function of the overpotential and, additionally, the electrode active surface was estimated. The results are consistent with data already published for other electrodes, implying that the methods used in this work were reliable and precise.
Resumo:
The data analyzed in this work were generated following the methodology developed by Molina et al.(J. Electroanal. Chem., 1979) for the calibration of a potentiometric system of measurement of hydrogen-ion concentrations resulting from neutralizations, at 25 ºC, of acidic or alkaline solutions at constant ionic strength (0.1 mol.l-1) held with NaClO4. The observed data present a serious deviation in relation to the mathematical model derived from the Nernst equation, for pH values ranging from 3 to 11, where pH=-log[H+]. We show that the minimization of the sum of the absolute values of the residuals gives estimates that are not influenced by outlying values.
Resumo:
The development associated with the research field involving crystalline inorganic lamellar titanium hydrogenphosphate, Ti(HPO4).H2O, synthesized as alpha or gamma forms, is directly linked to the huge number of reactions, that occur inside the free interlamellar space. Two distinguishable well-characterized features such as ion-exchange and intercalation reactions are explored here. From the interactive point of view, the acidic OH centres distributed on the lamella can interact with cations or with basic polar molecules to exchange or to intercalate them. These chemical reactions are normally followed by an expansion of the interlamellar space, proportional to the amount intercalated, reflecting in ion radii or organic molecule size lengths used in ion-exchange or insertion processes, respectively. The effectiveness of the exchange increased when the original matrix has the proton of OH group previously ion-exchanged by an alkaline or an alkylammonium cations. Monoalkyl-, dialkyl- and heterocyclic amines are focused in this revision as clear and elucidative examples of acid-base interactive processes, that come out inside of the well-formed infinite sequence of inorganic lamellar structure.
Resumo:
The photodegradation of parathion in natural and dezionised waters was studied under irradiation at two different wavelengths: 280 nm and 313 nm. The influence of humic acids was evaluated. The results demonstrated that the degradation occurred only due to photochemical processes. The chemical hydrolysis and biological processes can be neglected in this case. The addition of humic acids did not increase the photodegradation rate in either water samples (natural or dezionised). In alkaline solutions the photodegradation rate was higher in dezionised water when compared to natural waters. The kinetic degradation in all experiments obeyed a first order reaction pattern.
Resumo:
A simple device for glass plate drilling, which is an important step in microfabrication procedures, is described. A reservoir of concentrated hydrofluoric acid with a hole in its bottom is affixed against the glass plate. Leakage is prevented by using a neoprene O-ring. A plastic pipet tip inserted in the reservoir, close to the corrosion region, provides forced convection by pressure variations inside it. A device to make 5 simultaneous holes in a plate is also presented. For a 140 µm thickness alkaline glass lamina and 1/8" O-ring, 5 holes are drilled in 20 min.
Resumo:
The optimization of ferrate(VI) ion generation has been studied due to its favorable characteristics for application in several fields, including environmental quality control. The paper presents the best conditions for electrolytic generation of ferrate(VI) in alkaline media. An appropriate electrolyte was NaOH, 10 mol/L. Circulation of the electrolyte solution was important to avoid acidification close to the anode surface. An anode pre-cleaning with 10% HCl was more efficient than a cathodic pre-polarization. Among the distinct anode materials tested, pig iron showed the best performance, allowing up to 20 g/L of Na2FeO4, in 10 mol/L NaOH solution to be obtained, after 7 h of reactor operation, which is a concentration higher than those found in literature for alternative processes.
Resumo:
Rainwater samples were analyzed during a one-year period (June 1999 - June 2000) and presented concentration of pH = 4.9 (volume weight mean). The ions concentrations results showed a high sulfate concentration (35 µmol L-1), followed by the cations concentration of sodium, calcium and ammonium (35, 16 and 30 µmol L-1, respectively). Due to the great contribution of these cations in the sulfate neutralization action, the rainwater of this region had only a light acid characteristic. The soil characteristic was acid and the bioavailable concentration of the alkaline cations (Ca, Mg and K) presented high calcium concentrations (1001 ± 357 mg kg-1) compared with the other cations. The determination of soil sensitivity to acid rain was calculated by the ratio BC/Al3+ (BC = Ca2+ + Mg2+ + K+) and presented the average value of 5.1 ± 3.3. This preliminary evaluation of soil susceptibility by the ratio BC/Al3+ showed that the local soil and vegetation type (tropical Savannah) were sensitive to acid deposition. The long term of this impacting condition (acid rain, high sulfate deposition) could be harmful to the soil and vegetation quality.