92 resultados para dark current
Resumo:
Multiparametric MR (mpMR) imaging is rapidly evolving into the mainstay in prostate cancer (PCa) imaging. Generally, the examination consists of T2-weighted sequences, diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) evaluation, and less often proton MR spectroscopy imaging (MRSI). Those functional techniques are related to biological properties of the tumor, so that DWI correlates to cellularity and Gleason scores, DCE correlates to angiogenesis, and MRSI correlates to cell membrane turnover. The combined use of those techniques enhances the diagnostic confidence and allows for better characterization of PCa. The present article reviews and illustrates the technical aspects and clinical applications of each component of mpMR imaging, in a practical approach from the urological standpoint.
Resumo:
Objective: To analyze standardized uptake values (SUVs) using three different tube current intensities for attenuation correction on 18FNaF PET/CT scans. Materials and Methods: A total of 254 18F-NaF PET/CT studies were analyzed using 10, 20 and 30 mAs. The SUVs were calculated in volumes of interest (VOIs) drawn on three skeletal regions, namely, right proximal humeral diaphysis (RH), right proximal femoral diaphysis (RF), and first lumbar vertebra (LV1) in a total of 712 VOIs. The analyses covered 675 regions classified as normal (236 RH, 232 RF, and 207 LV1). Results: Mean SUV for each skeletal region was 3.8, 5.4 and 14.4 for RH, RF, and LV1, respectively. As the studies were grouped according to mAs value, the mean SUV values were 3.8, 3.9 and 3.7 for 10, 20 and 30 mAs, respectively, in the RH region; 5.4, 5.5 and 5.4 for 10, 20 and 30 mAs, respectively, in the RF region; 13.8, 14.9 and 14.5 for 10, 20 and 30 mAs, respectively, in the LV1 region. Conclusion: The three tube current values yielded similar results for SUV calculation.
Resumo:
Abstract A solitary pulmonary nodule is a common, often incidental, radiographic finding. The investigation and differential diagnosis of solitary pulmonary nodules remain complex, because there are overlaps between the characteristics of benign and malignant processes. There are currently many strategies for evaluating solitary pulmonary nodules. The main objective is to identify benign lesions, in order to avoid exposing patients to the risks of invasive methods, and to detect cases of lung cancer accurately, in order to avoid delaying potentially curative treatment. The focus of this study was to review the evaluation of solitary pulmonary nodules, to discuss the current role of 18F-fluorodeoxyglucose positron-emission tomography, addressing its accuracy and cost-effectiveness, and to detail the current recommendations for the examination in this scenario.
Resumo:
In this paper is presented electrochemical evidences of the influence of the light on the electrochemical behavior of nickel electrode in diluted sulfuric acid. The current densities related with the electrooxidation of the metal decreases when the electrode is under illumination. The corrosion potential, Ecorr , shift to a more positive value in this condition. This effect was observed with polychromatic light and with different wavelength glass filters such as 700 nm and 520 nm. It was observed that increasing the temperature of the solution, the current densities related with cathodic and anodic processes, increases instead of decreases. The activation energy related with the electrooxidation of the electrode was higher under illumination than in the dark. It is suggested that this behavior may be related or with a photo-inhibition effect either with dessorption of adsorbed water involved in the electrooxidation mechanism.
Resumo:
High-speed counter-current chromatography (HSCCC) is a major tool for the fast separation of natural products from plants. It was used for the preparative isolation of the flavonoid monoglucosides present in the aerial parts of the Davilla elliptica St. Hill. (Dilleniaceae). This species is used in Brazilian folk medicine for the treatment of gastric disorders. The optimum solvent system used was composed of a mixture of ethyl acetate-n-propanol-water (140:8:80, v/v/v) and led to a successful separation of quercetin-3-O-alpha-L-rhamnopyranoside and myricetin-3-O-alpha-L-rhamnopyranoside in approximately 3.0 hours with purity higher than 95%. Identification was performed by ¹H NMR, 13C NMR and HPLC-UV-DAD analyses.
Resumo:
Preparative high-speed counter-current chromatography (HSCCC) was successfully applied for separation and purification of sesquiterpenoids from an extract of Tussilago farfara L. with a two-phase solvent system composed of n-hexane-ethyl acetate- methanol-water (1:0.5:1.1:0.3, v/v/v/v). The separation produced a total of 32 mg of tussilagone, 18 mg of 14-acetoxy-7β-(3'-ethyl cis-crotonoyloxy)-lα-(2'-methyl butyryloxy)-notonipetranone and 21 mg of 7β-(3'-ethyl cis-crotonoyloxy)-lα-(2'- methyl butyryloxy)-3,14-dehydro-Z-notonipetranone from 500 mg of the crude extract in one step separation with the purity of 99.5, 99.4 and 99.1%, respectively, as determined by HPLC. The structures of these compounds were identified by ESI-MS, ¹H-NMR and 13C-NMR.
Resumo:
Supercritical fluid extraction was used to extract active compounds from the Chinese traditional medicinal D. dasycarpus under the pressure of 30 MPa and temperature of 45 ºC. Further separation and purification was established by high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:0.8:1.3:0.9, volume ratio). The separation yielded a total of 47 mg of dictamnine, 24 mg of obacunone and 83 mg of fraxinellone from 1.0 g of the crude extract in one step separation with the purity of 99.2, 98.4 and 99.0%, respectively, as determined by HPLC. The chemical structures of these compounds were identified by ESI-MS, IR, ¹H-NMR and 13C-NMR.
Resumo:
Eight bufadienolides were successfully isolated and purified from ChanSu by high-speed counter-current chromatography (HSCCC) combined with preparative HPLC (prep-HPLC). First, a stepwise elution mode of HSCCC with the solvent system composed of petroleum ether - ethyl acetate - methanol - water (4:6:4:6, 4:6:5:5, v/v) was employed and four bufadienolides, two partially purified fractions were obtained from 200 mg of crude extract. The partially purified fractions III and VI were then further separated by prep-HPLC, respectively, and another four bufadienolides were recovered. Their structures were confirmed by ESI-MS and ¹H-NMR spectra.
Resumo:
An efficient method for the rapid separation and purification of polyphenols from artichoke by polyamide column chromatography in combination with high-speed counter-current chromatography (HSCCC) was successfully built. The crude ethanol extracts from dry artichoke were first pre-separated by polyamide column chromatography and divided in two parts as sample 1 and sample 2. Then, the samples were further separated by HSCCC and yielded 7.8 mg of chlorogenic acid (compound I), 24.5 mg of luteolin-7-O-β-D-rutinoside (compound II), 18.4 mg of luteolin-7-O-β-D-glucoside (compound III), and 33.4 mg of cynarin (compound IV) with purity levels of 92.0%, 98.2%, 98.5%, and 98.0%, respectively, as determined by high-performance liquid chromatography (HPLC) method. The chemical structures of these compounds were identified by electrospray ionization-mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR).
Resumo:
The technique of pH-zone-refining counter-current chromatography was successfully applied to preparatively separate three C19-diterpenoid alkaloids from the crude extracts of Aconitum carmichaelii for the first time using a two-phase solvent system of petroleum ether-ethyl acetate-methanol-water (5:5:1:9, v/v/v/v). Mesaconitine (I), hypaconitine (II), and deoxyaconitine (III) were obtained from 2.5 g of the crude alkaloids in a one-step separation; the yields were 4.16%, 16.96%, and 5.05%, respectively. The purities of compounds I, II, and III were 93.0%, 95%, and 96%, respectively, as determined by HPLC. The chemical structures of the three compounds were identified by electrospray ionization mass spectrometry (ESI-MS) and NMR.
Resumo:
An effective method for the rapid separation and purification of three stilbenes from the radix of Polygonum cillinerve (Nakai) Ohwl by macroporous resin column chromatography combined with high-speed counter-current chromatography (HSCCC) was successfully established. In the present study, a two-phase solvent system composed of chloroform-n-butanol-methanol-water (4:1:4:2, v/v/v/v) was used for HSCCC separation. A one-step separation in 4 h from 150 mg of crude extract produced 26.3 mg of trans-resveratrol-3-O-glucoside, 42.0 mg of pieceid-2"-O-gallate, and 17.9 mg of trans-resveratrol with purities of 99.1%, 97.8%, and 99.4%, respectively, as determined by high-performance liquid chromatography (HPLC). The chemical structures of these compounds were identified by nuclear magnetic resonance (NMR) spectroscopy.
Resumo:
Noctuids are phytophagous lepidopterans with some species causing significant damage to agriculture. The host plants, in turn, have developed defense mechanisms to cope with them, for instance chemical defenses. In this study we review the literature on plant volatiles induced by noctuids, and discuss the methodologies used to induce the production of volatiles that are usually employed in plant defense mechanisms. Future prospects involving this line of research in pest control are also discussed.
Resumo:
The complex permittivity of films of polyether ether ketone (PEEK) has been investigated over a wide range of frequency. There is no relaxation peak in the range of 1Hz to 10(5) Hz but in the low-frequency side (10-4 Hz) there is an evidence of a peak that also can be observed by thermally stimulated discharge current measurements. That peak is related with the glass transition temperature (Tg) of the polymer. The activation energy of the relaxation was found to be 0.44 eV, similar to that of several synthetic polymers. Space charges are important in the conduction mechanism as shown by discharging transient.
Resumo:
The etiology and epidemiology of Pythium root rot in hydroponically-grown crops are reviewed with emphasis on knowledge and concepts considered important for managing the disease in commercial greenhouses. Pythium root rot continually threatens the productivity of numerous kinds of crops in hydroponic systems around the world including cucumber, tomato, sweet pepper, spinach, lettuce, nasturtium, arugula, rose, and chrysanthemum. Principal causal agents include Pythium aphanidermatum, Pythium dissotocum, members of Pythium group F, and Pythium ultimum var. ultimum. Perspectives are given of sources of initial inoculum of Pythium spp. in hydroponic systems, of infection and colonization of roots by the pathogens, symptom development and inoculum production in host roots, and inoculum dispersal in nutrient solutions. Recent findings that a specific elicitor produced by P. aphanidermatum may trigger necrosis (browning) of the roots and the transition from biotrophic to necrotrophic infection are considered. Effects on root rot epidemics of host factors (disease susceptibility, phenological growth stage, root exudates and phenolic substances), the root environment (rooting media, concentrations of dissolved oxygen and phenolic substances in the nutrient solution, microbial communities and temperature) and human interferences (cropping practices and control measures) are reviewed. Recent findings on predisposition of roots to Pythium attack by environmental stress factors are highlighted. The commonly minor impact on epidemics of measures to disinfest nutrient solution as it recirculates outside the crop is contrasted with the impact of treatments that suppress Pythium in the roots and root zone of the crop. New discoveries that infection of roots by P. aphanidermatum markedly slows the increase in leaf area and whole-plant carbon gain without significant effect on the efficiency of photosynthesis per unit area of leaf are noted. The platform of knowledge and understanding of the etiology and epidemiology of root rot, and its effects on the physiology of the whole plant, are discussed in relation to new research directions and development of better practices to manage the disease in hydroponic crops. Focus is on methods and technologies for tracking Pythium and root rot, and on developing, integrating, and optimizing treatments to suppress the pathogen in the root zone and progress of root rot.