144 resultados para anthrax toxin proteins
Resumo:
Thirty-eight strains of Shiga toxin-producing Escherichia coli (STEC) were characterised in terms of biochemical properties, enterohaemolysin production and plasmid carriage. A wide variation in the biochemical properties was observed among the STEC, with 14 distinct biotypes identified. Biotype 1 was the most common, found in 29% of the strains. Enterohaemolysin production was detected in 29% of the strains. Most of the bacterial strains (95%) carried one or more plasmids and considerable heterogeneity in size and combinations was observed. Seven distinct plasmid profiles were identified. The most common profile, characterised by the presence of a single plasmid of ~90 kb, was found in 50% of these strains. These data indicate extensive diversity among STEC strains. No correlation was found among biotype, serotype, enterohaemolysin production and plasmid profile.
Resumo:
Human malignant malaria is caused by Plasmodium falciparum and accounts for almost 900,000 deaths per year, the majority of which are children and pregnant women in developing countries. There has been significant effort to understand the biology of P. falciparum and its interactions with the host. However, these studies are hindered because several aspects of parasite biology remain controversial, such as N- and O-glycosylation. This review describes work that has been done to elucidate protein glycosylation in P. falciparum and it focuses on describing biochemical evidence for N- and O-glycosylation. Although there has been significant work in this field, these aspects of parasite biochemistry need to be explored further.
Resumo:
To study the potential for the emergence of resistance in Aedes aegypti populations, a wild colony was subjected to selective pressure with Cry11Aa, one of four endotoxins that compose the Bacillus thuringiensis serovar israelensis toxin. This bacterium is the base component of the most important biopesticide used in the control of mosquitoes worldwide. After 54 generations of selection, significant resistance levels were observed. At the beginning of the selection experiment, the half lethal concentration was 26.3 ng/mL and had risen to 345.6 ng/mL by generation 54. The highest rate of resistance, 13.1, was detected in the 54th generation. Because digestive proteases play a key role in the processing and activation of B. thuringiensis toxin, we analysed the involvement of insect gut proteases in resistance to the Cry11Aa B. thuringiensis serovar israelensis toxin. The protease activity from larval gut extracts from the Cry11Aa resistant population was lower than that of the B. thuringiensisserovar israelensis susceptible colony. We suggest that differences in protoxin proteolysis could contribute to the resistance of this Ae. aegypti colony.
Resumo:
The aim of this work was to evaluate the utility of ELISA-based testing of total IgG (IgGt) antibodies and its subclasses (IgG1, IgG2, IgG3 and IgG4) against soluble (STAg) and recombinant (rSAG1 and rMIC3) antigens of Toxoplasma gondii for diagnosing congenital toxoplasmosis. Sera from 217 newborns initially testing positive for specific IgM in filter paper dried blood spots were tested for specific IgM and IgG by ELFA-VIDAS®. Congenital toxoplasmosis was confirmed in 175 and ruled out in 42 infants. The validity of the ELISA tests was determined using the persistence of IgG antibodies (ELFA-VIDAS® kit) at the end of 12 months, which is considered the reference test for the diagnosis of congenital toxoplasmosis. The frequency of positivity with IgGt against STAg, rSAG1 and rMIC3 was found in 97.2%, 96.3% and 80.2%, respectively, of the newborns with confirmed congenital toxoplasmosis. IgG1 reacted with all three antigens, while IgG3 and IgG4 reacted preferentially with rMIC3. Higher mean values of reactivity (sample optical density/cut-off) were found for all subclasses when using rMIC3. All of the antigens showed high sensitivity and low specificity in detecting anti-T. gondii IgGt and IgG1 and low sensitivity and high specificity in detecting IgG3 and IgG4. In conclusion, the combined detection of IgG antibody subclasses against recombinant toxoplasmic antigens may be useful for the early diagnosis of congenital toxoplasmosis.
Resumo:
Leprosy is a slowly evolving disease that occurs mainly in adults. In this study, the Mamaría Village, state of Portuguesa was selected because it had one of the highest prevalence rates (13.25%) of leprosy cases in 1997. Between 1998-2004, 20.2% of the 89 cases registered in this village were less than 15 years old and 61.8% were males. Pau-cibacillary (PB) lesions were the predominant clinical forms identified, although also multibacillary (MB) forms were found. Additionally, 76% of the patients were bacteriologically negative. At the time of diagnosis, 75% of the patients presented with grade 0 disabilities, 23% with grade 1 and 2% with grade 2. Serum samples were collected from 18 PB and 15 MB patients, in addition to 14 family contacts, at the beginning and end of treatment. All the groups were re-evaluated during a three-year period (2008-2011). The proteins used for evaluation were ML0405, ML2331 and LID-1. These mycobacterial proteins were highly specific for Mycobacterium leprae and the IgG responses decreased in both MB and PB patients during multidrug treatment. Our results suggest that these antigens could be used as markers for successful treatment of non-reactional lepromatous patients.
Resumo:
Nucleotide sequence analyses of the Pvs48/45 and Pvs47 genes were conducted in 46 malaria patients from the Republic of Korea (ROK) (n = 40) and returning travellers from India (n = 3) and Indonesia (n = 3). The domain structures, which were based on cysteine residue position and secondary protein structure, were similar between Plasmodium vivax (Pvs48/45 and Pvs47) and Plasmodium falciparum (Pfs48/45 and Pfs47). In comparison to the Sal-1 reference strain (Pvs48/45, PVX_083235 and Pvs47, PVX_083240), Korean isolates revealed seven polymorphisms (E35K, H211N, K250N, D335Y, A376T, I380T and K418R) in Pvs48/45. These isolates could be divided into five haplotypes with the two major types having frequencies of 47.5% and 20%, respectivelfy. In Pvs47, 10 polymorphisms (F22L, F24L, K27E, D31N, V230I, M233I, E240D, I262T, I273M and A373V) were found and they could be divided into four haplotypes with one major type having a frequency of 75%. The Pvs48/45 isolates from India showed a unique amino acid substitution site (K26R). Compared to the Sal-1 and ROK isolates, the Pvs47 isolates from travellers returning from India and Indonesia had amino acid substitutions (S57T and I262K). The current data may contribute to the development of the malaria transmission-blocking vaccine in future clinical trials.
Resumo:
In this study, we designed an experiment to predict a potential immunodominant T-cell epitope and evaluate the protectivity of this antigen in immunised mice. The T-cell epitopes of the candidate proteins (EgGST, EgA31, Eg95, EgTrp and P14-3-3) were detected using available web-based databases. The synthesised DNA was subcloned into the pET41a+ vector and expressed in Escherichia coli as a fusion to glutathione-S-transferase protein (GST). The resulting chimeric protein was then purified by affinity chromatography. Twenty female C57BL/6 mice were immunised with the antigen emulsified in Freund's adjuvant. Mouse splenocytes were then cultured in Dulbecco's Modified Eagle's Medium in the presence of the antigen. The production of interferon-γ was significantly higher in the immunised mice than in the control mice (> 1,300 pg/mL), but interleukin (IL)-10 and IL-4 production was not statistically different between the two groups. In a challenge study in which mice were infected with 500 live protoscolices, a high protectivity level (99.6%) was demonstrated in immunised BALB/C mice compared to the findings in the control groups [GST and adjuvant (Adj) ]. These results demonstrate the successful application of the predicted T-cell epitope in designing a vaccine against Echinococcus granulosus in a mouse model.
Resumo:
Bacillus thuringiensis subsp. israelensis (Bti) is increasingly used worldwide for mosquito control and is the only larvicide used in the French Rhône-Alpes region since decades. The artificial selection of mosquitoes with field-persistent Bti collected in breeding sites from this region led to a moderate level of resistance to Bti, but to relatively high levels of resistance to individual Bti Cry toxins. Based on this observation, we developed a bioassay procedure using each Bti Cry toxin separately to detect cryptic Bti-resistance evolving in field mosquito populations. Although no resistance to Bti was detected in none of the three mosquito species tested (Aedes rusticus, Aedes sticticus and Aedes vexans), an increased tolerance to Cry4Aa (3.5-fold) and Cry11Aa toxins (8-fold) was found in one Ae. sticticus population compared to other populations of the same species, suggesting that resistance to Bti may be arising in this population. This study confirms previous works showing a lack of Bti resistance in field mosquito populations treated for decades with this bioinsecticide. It also provides a first panorama of their susceptibility status to individual Bti Cry toxins. In combination with bioassays with Bti, bioassays with separate Cry toxins allow a more sensitive monitoring of Bti-resistance in the field.
Resumo:
Rheumatoid arthritis (RA) is an autoimmune disease characterised by the destruction of articular cartilage and bone damage. The chronic treatment of RA patients causes a higher susceptibility to infectious diseases such as tuberculosis (TB); one-third of the world’s population is latently infected (LTBI) with Mycobacterium tuberculosis(Mtb). The tuberculin skin test is used to identify individuals LTBI, but many studies have shown that this test is not suitable for RA patients. The goal of this work was to test the specific cellular immune responses to the Mtb malate synthase (GlcB) and heat shock protein X (HspX) antigens of RA patients and to correlate those responses with LTBI status. The T-helper (Th)1, Th17 and Treg-specific immune responses to the GlcB and HspX Mtb antigens were analysed in RA patients candidates for tumour necrosis factor-α blocker treatment. Our results demonstrated that LTBI RA patients had Th1-specific immune responses to GlcB and HspX. Patients were followed up over two years and 14.3% developed active TB. After the development of active TB, RA patients had increased numbers of Th17 and Treg cells, similar to TB patients. These results demonstrate that a GlcB and HspX antigen assay can be used as a diagnostic test to identify LTBI RA patients.
Resumo:
The fungal strain Paracoccidioides brasiliensisremains viable inside of epithelial cells and can induce apoptosis in this population. However, until now, the molecules that participate in this process remained unknown. Thus, this study evaluated the contribution of two P. brasiliensismolecules, the 14-3-3 and glycoprotein of 43 kDa proteins, which had been previously described as extracellular matrix adhesins and apoptosis inductors in human pneumocytes. Accordingly, epithelial cells were treated with these molecules for different periods of time and the expression of the apoptosis regulating-proteins Bak, Bax, Bcl-2, p53 and caspases were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labelling, flow cytometry and real-time polymerase chain reaction analysis. Our results demonstrated that treatment with these molecules induces apoptosis signalling in pulmonary epithelial cells, showing the same pattern of programmed cell-death as that observed during infection with P. brasiliensis. Thus, we could conclude that P. brasiliensisuses these molecules as virulence factors that participate not only in the fungal adhesion process to host cells, but also in other important cellular mechanisms such as apoptosis.
Resumo:
Leptospirosis is a zoonotic disease caused by pathogenic spirochetes of theLeptospira genus. Vaccination with bacterins has severe limitations. Here, we evaluated the N-terminal region of the leptospiral immunoglobulin-like B protein (LigBrep) as a vaccine candidate against leptospirosis using immunisation strategies based on DNA prime-protein boost, DNA vaccine, and subunit vaccine. Upon challenge with a virulent strain ofLeptospira interrogans, the prime-boost and DNA vaccine approaches induced significant protection in hamsters, as well as a specific IgG antibody response and sterilising immunity. Although vaccination with recombinant fragment of LigBrep also produced a strong antibody response, it was not immunoprotective. These results highlight the potential of LigBrep as a candidate antigen for an effective vaccine against leptospirosis and emphasise the use of the DNA prime-protein boost as an important strategy for vaccine development.
Resumo:
This study aimed to evaluate, in controlled laboratory conditions (temperature of 25±2 °C, relative humidity of 60±10%, and 14/10 h L/D photoperiod), the larval development of Spodoptera eridania (Cramer, 1784) (Lepidoptera, Noctuidae) fed with leaves of Bt maize expressing Cry1F and Cry1F + Cry1A.105 + Cry2Ab2 insecticide proteins and its non-Btisoline. Maize leaves triggered 100% of mortality on S. eridania larvae independently of being Bt or non-Bt plants. However, it was observed that in overall Bt maize (expressing a single or pyramided protein) slightly affects the larval development of S. eridania, even under reduced leaf consumption. Therefore, these results showed that Cry1F and Cry1F + Cry1A.105 + Cry2Ab2 can affect the larval development of S. eridania, although it is not a target pest of this plant; however, more research is needed to better understand this evidence. Finally, this study confirms that non-Bt maize leaves are unsuitable food source to S. eridania larvae, suggesting that they are not a potential pest in maize fields.
Resumo:
The objective of this work was to produce and characterize specific antisera against Brazilian isolates of Grapevine leafroll-associated virus 2 (GLRaV-2) and Grapevine virus B (GVB), developed from expressed coat proteins (CPs) in Escherichia coli, and to test their possible use for the detection of these two viruses in diseased grapevines. The coat protein (CP) genes were RT-PCR-amplified, cloned and sequenced. The CP genes were subsequently subcloned, and the recombinant plasmids were used to transform E. coli cells and express the coat proteins. The recombinant coat proteins were purified, and their identities were confirmed by SDS-PAGE and Western blot and used for rabbit immunizations. Antisera raised against these proteins were able to recognize the corresponding recombinant proteins in Western blots and to detect GLRaV-2 and GVB in infected grapevine tissues, by indirect ELISA, discriminating healthy and infected grapevines with absorbances (A405) of 0.08/1.15 and 0.12/1.30, respectively. Expressing CP genes can yield high amount of viral protein with high antigenicity, and GLRaV-2 and GVB antisera obtained in this study can allow reliable virus disease diagnosis.
Resumo:
The objective of this work was to quantify the accumulation of the major seed storage protein subunits, β-conglycinin and glycinin, and how they influence yield and protein and oil contents in high-protein soybean genotypes. The relative accumulation of subunits was calculated by scanning SDS-PAGE gels using densitometry. The protein content of the tested genotypes was higher than control cultivar in the same maturity group. Several genotypes with improved protein content and with unchanged yield or oil content were developed as a result of new breeding initiatives. This research confirmed that high-protein cultivars accumulate higher amounts of glycinin and β-conglycinin. Genotypes KO5427, KO5428, and KO5429, which accumulated lower quantities of all subunits of glycinin and β-conglycinin, were the only exceptions. Attention should be given to genotypes KO5314 and KO5317, which accumulated significantly higher amounts of both subunits of glycinin, and to genotypes KO5425, KO5319, KO539 and KO536, which accumulated significantly higher amounts of β-conglycinin subunits. These findings suggest that some of the tested genotypes could be beneficial in different breeding programs aimed at the production of agronomically viable plants, yielding high-protein seed with specific composition of storage proteins for specific food applications.