196 resultados para acid lime
Resumo:
Mining in the State of Minas Gerais-Brazil is one of the activities with the strongest impact on the environment, in spite of its economical importance. Amongst mining activities, acid drainage poses a serious environmental problem due to its widespread practice in gold-extracting areas. It originates from metal-sulfide oxidation, which causes water acidification, increasing the risk of toxic element mobilization and water resource pollution. This research aimed to evaluate the acid drainage problem in Minas Gerais State. The study began with a bibliographic survey at FEAM (Environment Foundation of Minas Gerais State) to identify mining sites where sulfides occur. Substrate samples were collected from these sites to determine AP (acidity potential) and NP (neutralization potential). The AP was evaluated by the procedure of the total sulfide content and by oxygen peroxide oxidation, followed by acidity titration. The NP was evaluated by the calcium carbonate equivalent. Petrographic thin sections were also mounted and described with a special view to sulfides and carbonates. Based on the chemical analysis, the acid-base accounting (ABA) was determined by the difference of AP and NP, and the acid drainage potential obtained by the ABA value and the total volume of material at each site. Results allowed the identification of substrates with potential to generate acid drainage in Minas Gerais state. Altogether these activities represent a potential to produce between 3.1 to 10.4 billions of m³ of water at pH 2 or 31.4 to 103.7 billions of m³ of water at pH 3. This, in turn, would imply in costs of US$ 7.8 to 25.9 millions to neutralize the acidity with commercial limestone. These figures are probably underestimated because some mines were not surveyed, whereas, in other cases, surface samples may not represent reality. A more reliable state-wide evaluation of the acid drainage potential would require further studies, including a larger number of samples. Such investigations should consider other mining operations beyond the scope of this study as well as the kinetics of the acid generation by simulated weathering procedures.
Resumo:
The basidiospores of Pisolithus sp. contain large amounts of lipids, indicating provision for future germination in the host rhizosphere. However, the accumulation, composition, and mobilization of lipids during formation and germination of these spores are largely unknown. In this study, lipid storage and fatty acid composition during basidiosporogenesis were analyzed in fresh basidiocarps using bright-field microscopy and gas chromatography. Abundant lipid bodies are found in the hyphae, basidia, and basidiospores of fungal basidiocarps. This evidences a considerable C transport in the basidiocarp to meet the C demand during basidiospore formation. Fatty acid composition analysis revealed the presence of 24 compounds with chains of 9 to 18 C atoms, either saturated or insaturated, with one or two insaturations. The fatty acid composition and content varied according to the developmental stage of the peridioles. In free basidiospores, the predominant compounds were 16:0, 16:1w5c, 18:1w9c, and 18:2w6,9c/18:0ante, at concentrations of 76, 46, 192, and 51 µg g-1 dry matter, respectively. Our results indicate that oleic acid is the major constituent of lipid reserves in Pisolithus sp. basidiospores. Further studies are being conducted to determine the factors that induce lipid mobilization during spore germination.
Resumo:
A large proportion of soybean fields in Brazil are currently cultivated in the Cerrado region, where the area planted with this crop is growing considerably every year. Soybean cultivation in acid soils is also increasing worldwide. Since the levels of toxic aluminum (Al) in these acid soils is usually high it is important to understand how cations can reduce Al rhizotoxicity in soybean. In the present study we evaluated the ameliorative effect of nine divalent cations (Ca, Mg, Mn, Sr, Sn, Cu, Zn, Co and Ba) in solution culture on Al rhizotoxicity in soybean. The growth benefit of Ca and Mg to plants in an acid Inceptisol was also evaluated. In this experiment soil exchangeable Ca:Mg ratios were adjusted to reach 10 and 60 % base saturation, controlled by different amounts of CaCl2 or MgCl2 (at proportions from 100:0 up to 0:100), without altering the soil pH level. The low (10 %) and adequate (60 %) base saturation were used to examine how plant roots respond to Al at distinct (Ca + Mg)/Al ratios, as if they were growing in soils with distinct acidity levels. Negative and positive control treatments consisted of absence (under native soil or undisturbed conditions) or presence of lime (CaCO3) to reach 10 and 60 % base saturation, respectively. It was observed that in the absence of Aluminum, Cu, Zn, Co and Sn were toxic even at a low concentration (25 µmol L-1), while the effect of Mn, Ba, Sr and Mg was positive or absent on soybean root elongation when used in concentrations up to 100 µmol L-1. At a level of 10 µmol L-1 Al, root growth was only reverted to the level of control plants by the Mg treatment. Higher Tin doses led to a small alleviation of Al rhizotoxicity, while the other cations reduced root growth or had no effect. This is an indication that the Mg effect is ion-specific and not associated to an electrostatic protection mechanism only, since all ions were divalent and used at low concentrations. An increased exchangeable Ca:Mg ratio (at constant soil pH) in the acid soil almost doubled the soybean shoot and root dry matter even though treatments did not modify soil pH and exchangeable Al3+. This indicates a more efficient alleviation of Al toxicity by Mg2+ than by Ca2+. The reason for the positive response to Mg2+ was not the supply of a deficient nutrient because CaCO3 increased soybean growth by increasing soil pH without inducing Mg2+ deficiency. Both in hydroponics and acid soil, the reduction in Al toxicity was accompanied by a lower Al accumulation in plant tissue, suggesting a competitive cation absorption and/or exclusion of Al from plant tissue stimulated by an Mg-induced physiological mechanism.
Resumo:
Exchangeable Al has been used as a criterion for the calculation of lime requirement in several Brazilian States. However, the laboratory method with extraction by a 1 mol L-1 KCl solution followed by indirect alkaline titration is not accurate for some Brazilian soils, mainly in the case of soils with high organic matter content. The objective of this study was therefore to evaluate the stoichiometry of H+/Al3+ in KCl soil extracts. The results suggested that organically complexed Al is the main contributor to exchangeable acidity in soils enriched with organic matter. Liming recommendations for organic soils based exclusively on exchangeable Al determined by the NaOH titration method should therefore be revised.
Resumo:
In the best cultivation methods of orchids, in particular of the genus Phalaenopsis, liming is a common practice. The objective of this study was to evaluate the influence of lime rates (0.0; 1.0; 2.0; 3.0; 4.0; and 5.0 g dm-3 of substrate) applied to the cultivation substrate (xaxim) on the growth of Epidendrum ibaguense seedlings. In a greenhouse, 1-L plastic pots filled with 0.8 dm³ of xaxim were irrigated such that no leachate was lost during the experiment. N, P, K, Ca, Mg, S, Fe, Zn, B, and Mn contents in roots, stems and leaves were measured. Leachate was collected by applying a sufficient water volume to obtain 25 mL from each pot. Fourteen days after lime application of 3 g dm-3, the pH of the collected leachate reached values above 7 and a value of 6.29 with the highest lime rate at the end of the experiment. The lime rate did not influence plant height, probably due to a Zn deficiency at high pH levels and a Ca deficiency in the control. Nevertheless, there was a large increase in leaf production, for number as well as for dry matter mass. There was no statistical difference between treatments in root dry matter production. Maximum dry matter production was obtained at a lime rate of 4.09 g dm-3. Zinc concentrations diminished linearly with increasing lime rates; the concentrations in all treatments were below the levels suggested as adequate in the literature (25-200 mg kg-1). Nutrient concentrations in leaves indicated deficiency of N, S, and B at the highest lime rates (4.0 and 5.0 g dm-3), and of Ca in the treatment without liming.
Resumo:
Lime and gypsum influence nutrient availability and uptake, as well as the content of organic acids in the aerial plant parts. These changes, quantified by plant analysis of soluble nutrients, may potentiate the effect of soil amendment, ensuring the sustainability of the no-tillage system. In this sense the effect of lime and gypsum surface application on the content of water-soluble nutrients in peanut and oat residues was evaluated. The experiment was conducted on an Oxisol in Botucatu (SP) in the growing seasons 2004/2005 and 2005/2006. It was arranged in a randomized block design in split plots with four replications, where lime rates represented the plots and presence or absence of gypsum application the subplots. Peanut was grown in summer and white oat in the winter in the entire experimental area. Gypsum applied to peanut increased soluble Ca only in the first season, due to the short period between product application and determination of soluble nutrient contents in the plant extract. Liming of peanut and oat increased soluble Ca, Mg, K contents, did not alter Cu content and reduced Zn, Mn and Fe contents in both years of cultivation. Gypsum on the other hand reduced the electrical conductivity of peanut (2004/2005 and 2005/2006) and white oat (2004/2005).
Resumo:
Rhizoctonia-like fungi are the main mycorrhizal fungi in orchid roots. Morphological characterization and analysis of conserved sequences of genomic DNA are frequently employed in the identification and study of fungi diversity. However, phytopathogenic Rhizoctonia-like fungi have been reliably and accurately characterized and identified through the examination of the fatty acid composition. To evaluate the efficacy of fatty acid composition in characterizing and identifying Rhizoctonia-like mycorrhizal fungi in orchids, three Epulorhiza spp. mycorrhizal fungi from Epidendrum secundum, two unidentified fungi isolated from Epidendrum denticulatum, and a phytopathogenic fungus, Ceratorhiza sp. AGC, were grouped based on the profile of their fatty acids, which was assessed by the Euclidian and Mahalanobis distances and the UPGMA method. Dendrograms distinguished the phytopathogenical isolate of Ceratorhiza sp. AGC from the mycorrhizal fungi studied. The symbionts of E. secundum were grouped into two clades, one containing Epulorhiza sp.1 isolates and the other the Epulorhiza sp.2 isolate. The similarity between the symbionts of E. denticulatum and Epulorhiza spp. fungi suggests that symbionts found in E. denticulatum may be identified as Epulorhiza. These results were corroborated by the analysis of the rDNA ITS region. The dendrogram constructed based on the Mahalanobis distance differentiated the clades most clearly. Fatty acid composition analysis proved to be a useful tool for characterizing and identifying Rhizoctonia-like mycorrhizal fungi.
Resumo:
Silicon (Si) is beneficial to plants in several aspects, but there are doubts about the effectiveness of leaf application. The purpose of this work was to evaluate the effects of Si, applied in a newly developed stabilized silicic acid form to the leaf, on nutrition and yield of irrigated white oat and wheat. Two experiments were performed (one per crop) in winter 2008, in Botucatu-SP, Brazil. A completely randomized block design with 14 replications was used. Treatments consisted of a control (without Si application) and Si leaf spraying, at a rate of 2.0 L ha-1 of the commercial product containing 0.8 % soluble Si. Silicon rate was divided in three parts, i.e. applications at tillering, floral differentiation and booting stages. Silicon leaf application increased N, P, K, and Si concentrations in white oat flag leaf, resulting in higher shoot dry matter, number of panicles per m², number of grains per panicle and grain yield increase of 34 %. In wheat, Si leaf application increased K and Si concentrations, shoot dry matter and number of spikes per m², resulting in a grain yield increase of 26.9 %.
Resumo:
Organic acids play an important role in the nutritional conditions of plants. Their relevance is related to their formation dynamics, mineralization rate and adsorption by soil colloids. This study was carried out to evaluate the dynamics of mineralization and adsorption of organic acid (acetic acid - AA, citric acid - CA and humic acid - HA) applied to the soil. Samples of two Oxisols were used: Rhodic Haplustox (LV) and Typic Haplustox (LVA). The mineralization experiment was arranged in a 2 x 3 x 5 factorial design, based on the factors: two soils (LV and LVA) x three organic acid (OA) types (AA, CA and HA) x five OA rates (0, 1, 2, 4, and 8 mmol dm-3). Organic carbon mineralization in samples was measured by the C-CO2 efflux, produced by the microbial activity, in a 30-day (measurements after 4, 8, 12, 21, and 30 days) and in a 4-day experiment (measured after 24, 48, 72 and 96 h). Organic acid adsorption was tested in a 2 x 2 x 5 x 4 factorial design, with the factors and levels: two Oxisols; two organic acids (AA and CA); five OA rates (0, 1, 2, 4, and 8 mmol dm-3) and four adsorption periods (6, 24, 48, and 72 h). The C-CO2 production of soil treated with CA was highest. In the adsorption experiment, the affinity of CA to soil adsorption sites was greatest. The adsorption of organic acids to soils may be an important mechanism by which bioavailability and thus mineralization capacity by microbial activity are reduced.
Resumo:
Sugarcane is considered a Si-accumulating plant, but in Brazil, where several soil types are used for cultivation, there is little information about silicon (Si) fertilization. The objectives of this study were to evaluate the silicon availability, uptake and recovery index of Si from the applied silicate on tropical soils with and without silicate fertilization, in three crops. The experiments in pots (100 L) were performed with specific Si rates (0, 185, 370 and 555 kg ha-1 Si), three soils (Quartzipsamment-Q, 6 % clay; Rhodic Hapludox-RH, 22 % clay; and Rhodic Acrudox-RA, 68 % clay), with four replications. The silicon source was Ca-Mg silicate. The same Ca and Mg quantities were applied to all pots, with lime and/or MgCl2, when necessary. Sugarcane was harvested in the plant cane and first- and second-ratoon crops. The silicon rates increased soil Si availability and Si uptake by sugarcane and had a strong residual effect. The contents of soluble Si were reduced by harvesting and increased with silicate application in the following decreasing order: Q>RH>RA. The silicate rates promoted an increase in soluble Si-acetic acid at harvest for all crops and in all soils, except RA. The amounts of Si-CaCl2 were not influenced by silicate in the ratoon crops. The plant Si uptake increased according to the Si rates and was highest in RA at all harvests. The recovery index of applied Si (RI) of sugarcane increased over time, and was highest in RA.
Resumo:
Incorporation of rice straw into the soil just before flooding for water-seeded rice can immobilize mineral nitrogen (N) and lead to the production of acetic acid harmful to the rice seedlings, which negatively affects grain yield. This study aimed to evaluate the formation of organic acids and variation in pH and to quantify the mineral N concentration in the soil as a function of different times of incorporation of rice straw or of ashes from burning the straw before flooding. The experiment was carried out in a greenhouse using an Inceptisol (Typic Haplaquept) soil. The treatments were as follows: control (no straw or ash); incorporation of ashes from previous straw burning; rice straw incorporated to drained soil 60 days before flooding; straw incorporated 30 days before flooding; straw incorporated 15 days before flooding and straw incorporated on the day of flooding. Experimental units were plastic buckets with 6.0 kg of soil. The buckets remained flooded throughout the trial period without rice plants. Soil samples were collected every seven days, beginning one day before flooding until the 13th week of flooding for determination of mineral N- ammonium (NH4+) and nitrate (NO3-). Soil solution pH and concentration of organic acids (acetic, propionic and butyric) were determined. All NO3- there was before flooding was lost in approximately two weeks of flooding, in all treatments. There was sigmoidal behavior for NH4+ formation in all treatments, i.e., ammonium ion concentration began to rise shortly after soil flooding, slightly decreased and then went up again. On the 91st day of flooding, the NH4+ concentrations in soil was 56 mg kg-1 in the control treatment, 72 mg kg-1 for the 60-day treatment, 73 mg kg-1 for the 30-day treatment and 53 mg kg-1 for the ash incorporation treatment. These ammonium concentrations correspond to 84, 108, 110 and 80 kg ha-1 of N-NH4+, respectively. When the straw was incorporated on the day of flooding or 15 days before, the concentration of N-NH4+ in the soil was 28 and 54 mg kg-1, equivalent to an accumulation of 42 and 81 kg ha-1 of N-NH4+, respectively. There was formation of acetic acid in which toxic concentrations were reached (7.2 mmol L-1) on the 15th day of flooding only for the treatment with straw incorporated on the day of flooding. The pH of the soil solution of all the treatments increased after flooding and this increase was faster in the treatments with incorporation of straw, followed by the ash treatment and then the control. After 60 days of flooding, however, the pH values were around 6.5 for all treatments, except for the control, which reached a pH of 6.3. Rice straw should be incorporated into the soil at least 30 days before flooding; otherwise, it may immobilize part of the mineral N and produce acetic acid in concentrations toxic to rice seedlings.
Resumo:
Based on the assumption that silicate application can raise soil P availability for crops, the aim of this research was to compare the effect of silicate application on soil P desorption with that of liming, in evaluations based on two extractors and plant growth. The experiment was carried out in randomized blocks with four replications, in a 3 × 3 × 5 factorial design, in which three soil types, three P rates, and four soil acidity correctives were evaluated in 180 experimental plots. Trials were performed in a greenhouse using corn plants in 20-dm³ pots. Three P rates (0, 50 and 150 mg dm-3) were applied in the form of powder triple superphosphate and the soil was incubated for 90 days. After this period, soil samples were collected for routine chemical analysis and P content determination by the extraction methods resin, Mehlich-1 and remaining P. Based on the results, acidity correctives were applied at rates calculated for base saturation increased to 70 %, with subsequent incubation for 60 more days, when P content was determined again. The acidity correctives consisted of: dolomitic lime, steelmaking slag, ladle furnace slag, and wollastonite. Therefore, our results showed that slags raised the soil P content more than lime, suggesting a positive correlation between P and Si in soil. Silicon did not affect the extractor choice since both Mehlich-1 and resin had the same behavior regarding extracted P when silicon was applied to the soil. For all evaluated plant parameters, there was significant interaction between P rates and correctives; highest values were obtained with silicate.
Resumo:
ABSTRACT Humic acids (HA) are a component of humic substances (HS), which are found in nearly all soils, sediments, and waters. They play a key role in many, if not most, chemical and physical properties in their environment. Despite the importance of HA, their high complexity makes them a poorly understood system. Therefore, understanding the physicochemical properties and interactions of HA is crucial for determining their fundamental role and obtaining structural details. Cationic surfactants are known to interact electrostatically and hydrophobically with HA. Because they are a very well-known and characterized system, they offer a good choice as molecular probes for studying HA. The objective of this study was to evaluate the interaction between cationic surfactants and HA through isothermal titration calorimetry in a thermodynamic manner, aiming to obtain information about the basic structure of HA, the nature of this interaction, and if HA from different origins show different basic structures. Contrary to what the supramolecular model asserts, HA structure is not loosely held, though it may separate depending on the conditions the HA are subjected to in their milieu. It did not show any division or conformational change when interacting with surfactants. The basic structure of the HA remains virtually the same regardless of the different sources and compositions of these HA.
Resumo:
ABSTRACT Management of boron fertilization depends on the magnitude of B leaching in the soil profile, which varies proportionally with the concentration of B in the soil solution, which, in turn, decreases as the soil pH increases due to the higher sorption of B on soil solid surfaces. The objective of this study was to quantify the effect of liming and rates of B applied to the soil on B leaching. The experiment was carried out in the laboratory in 2012, and treatments consisted of a factorial combination of two rates of liming (without and with lime to raise the soil pH to 6.0) and five rates of B (0, 10, 20, 50 and 100 mg kg-1, as boric acid). A Typic Rhodudalf was used, containing 790 g kg-1 clay and 23 g kg-1 organic matter; the pH(H2O) was 4.6. Experimental units were composed of PVC leaching columns (0.10 m in diameter) containing 1.42 kg of soil (dry base). Boron was manually mixed with the top 0.15 m of the soil. After that, every seven days for 15 weeks, 300 mL of distilled water were added to the top of each column. In the percolated solution, both the volume and concentration of B were measured. Leaching of B decreased with increased soil pH and, averaged across the B rates applied, was 58 % higher from unlimed (pH 4.6) than from limed (pH 6.6) samples as a result of the increase in B sorption with higher soil pH. In spite of its high vertical mobility, the residual effect of B was high in this oxisol, mainly in the limed samples where 80 % of B applied at the two highest rates remained in the soil, even after 15 water percolations. Total recovery of applied B, including leached B plus B extracted from the soil after all percolations, was less than 50 %, showing that not all sorbed B was quantified by the hot water extraction method.
Resumo:
ABSTRACT Organic acids present in organic matter and, or, exudates by microorganisms and plants can increase the liberation of potassium present in minerals. The objective of this study was to characterize the residue from ornamental rocks and evaluate the release of K from these residues after the application of organic acids. The experiment was conducted under laboratory conditions and followed a 2 × 3 × 5 factorial design with three replicates. The studied factors were: two organic acids (citric acid and malic acid), three ornamental rock residues (R1, R2 and R3) and five organic acid rates (0, 5, 10, 20 and 40 mmol L-1). After agitation, K concentrations were determined in the equilibrium solution. Successive extractions were performed (1, 5, 10, 15, 30 and 60 days after the start of the experiment). The organic acids used (citric and malic) promoted the release of up to 4.86 and 4.34 % of the total K contained in the residue, respectively, reinforcing the role of organic acids in the weathering of minerals and in providing K to the soil. The K quantities were, on average, 6.1 % higher when extracted with citric acid compared to malic acid.