83 resultados para Zn(II)-diclofenac complex
Resumo:
Thermal decomposition of [Bu4N]2[Zn(imnt)2] and [M(NH3)2(imnt)] complexes with M = Zn and Cd, and imnt = (bis 1,1-dicyanoethylene-2,2 dithiolate) in inert atmosphere was investigated by thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). Pyrolysis studies at different temperatures, 300, 400, 500, and 600 ºC, in N2 atmosphere were performed and the products were characterized by X-ray diffraction (XRD), infrared and Raman spectroscopy, and scanning electron microscopy (SEM). The products were identified as sulfide sub-micron particles, along with amorphous carbon. Particle sizes estimated by SEM were ca. 50 nm for the cationic complexes and 500 nm for the neutral complexes.
Resumo:
This work describes, through examples, a simple way to carry out experimental design calculations applying an spreadsheets. The aim of this tutorial is to introduce an alternative to sophisticated commercial programs that normally are too complex in data input and output. An overview of the principal methods is also briefly presented. The spreadsheets are suitable to handle different types of computations such as screening procedures applying factorial design and the optimization procedure based on response surface methodology. Furthermore, the spreadsheets are sufficiently versatile to be adapted to specific experimental designs.
Resumo:
In potentiometric titrations of metal cations with EDTA the Hg/HgY2- system is usually used to detect the end point. However, the use of mercury has been discouraged in analytical procedures due to its toxicity. In this work the Cu/CuY2- system was used as indicator electrode for potentiometric titrations of some metal cations with EDTA. The solutions of Cu2+, Cd2+, Mn2+, Co2+ and Zn2+ were titrated with Na2EDTA solution in the presence of a small concentration of the CuY2- complex using a copper wire as indicator electrode. The potentiometric titrations with the Cu/CuY2- system showed good correlation when compared with an Hg/HgY2- system.
Resumo:
FeBr2 has reacted with an equivalent of mnt2- (mnt = cis-1,2-dicyanoethylene-1,2-dithiolate) and the α-diimine L (L = 1,10'-phenantroline, 2,2'-bipyridine) in THF solution, and followed by adding of t-butyl-isocyanide to give [Fe(mnt)(L)(t-BuNC)2] neutral compound. The products were characterized by infrared, UV-visible and Mössbauer spectroscopy, besides thermogravimetric and conductivity data. The geometry in the equilibrium was calculated by the density functional theory and the electronic spectrum by the time-dependent. The experimental and theoretical results in good agreement have defined an octahedral geometry with two isocyanide neighbours. The π→π* intraligand electronic transition was not observed for cis-isomers in the near-IR spectral region.
Resumo:
A spectrophotometric method was proposed for Ni(II) determination in alloys using a dopa-semiquinone (L-1) to form [Ni(II)(L1-)3]1-, ε = 9.3 x 10³ L mol-1 cm-1. The optimal conditions for the determination were: wavelength 590 nm, temperature 25 °C, reaction time 45 min and pH 7.5. The Beer's law was obeyed for nickel from 3.33 x 10-5 to 1.78 x 10-4 mol L-1. The method was applied to complex samples, such as inox, nickel-titanium and cobalt-chromium alloys. A study of the potential interferents revealed that Mn was the major interferent. The limit of detection and quantification were 2.88 x 10-5 mol L-1 and 3.06 x 10-5 mol L-1, respectively.
Resumo:
The reaction of 4-(phenyl)thiosemicarbazide with isatin yielded a new ligand, isatin-3-(N4-benzylthiosemicarbazone). Isatin-3-(N4-benzylthiosemicarbazone) deprotonated in ethanol/KOH reacts with an ethanolic solution of Hg(NO3)2 to give a mercury complex. The compounds were characterized by IR and X-ray single crystal structure determination. The X-ray studies revealed that the complex possesses a tetrahedral geometry with two deprotonated thiosemicarbazone ligands coordenated. The ligand and its mercury complex crystallize in the monoclinic (P2(1)/c) and triclinic (P-1) crystal system, respectively.
Resumo:
Two complexes of Rh(I) and Pd(II) with chloride and tridecylamine ligands were obtained and characterized by Elementary Analysis and by XPS and FTIR spectroscopies. Complexes anchored on γ-Al2O3 were tested in the styrene semi-hydrogenation reaction carried out in the absence or presence of a sulfur poison. Although both low loaded catalysts were highly selective, the Pd(II) complex was three times more active than the Rh(I) complex. The rhodium complex was more sulfur resistant but less active than the palladium complex. Differences in conversion and sulfur resistance between both complexes could be related to electronic and/or geometric effects.
Resumo:
Zn-EDTA degradabilty by catechol-driven Fenton reaction was studied. Response surface methodology central composite design was employed to maximize this complex degradation. Theoretical speciation calculations were in good agreement with the experimental results. Fenton and Fenton type treatments are typically thought to be applicable only in the highly acidic range, representing a major operational constraint. Interestingly, at optimized concentrations, this CAT-driven Fenton reaction at pH 5.5 achieved 100% Zn-EDTA degradation; 60% COD and 17% TOC removals, using tiny amounts of CAT (50 µM), Fe(III) (445 µM) and H2O2 (20 mM) with no evident ferric sludge.
Resumo:
The excitation energy transfer between chlorophylls in major and minor antenna complexes of photosystem II (PSII) was investigated using quantum Fourier transforms. These transforms have an important role in the efficiency of quantum algorithms of quantum computers. The equation 2n=N was used to make the connection between excitation energy transfers using quantum Fourier transform, where n is the number of qubits required for simulation of transfers and N is the number of chlorophylls in the antenna complexes.
Resumo:
In this work, an effective and low-cost method for the determination of sodium or potassium diclofenac is proposed in its pure form and in their pharmaceutical preparations. The method is based on the reaction between diclofenac and tetrachloro-p-benzoquinone (p-chloranil), in methanol medium. This reaction was accelerated by irradiating of reactional mixture with microwave energy (1100 W) during 27 seconds, producing a charge transfer complex with a maximum absorption at 535 nm. The optimal reaction conditions values such as reagent concentration, heating time and stability of the reaction product were determined. Beer's law is obeyed in a concentration range from of 1.25x10-4 to 2.00x10-3 mol l-1 with a correlation coefficient of 0.9993 and molar absorptivity of 0.49 x10³ l mol-1 cm-1. The limit of detection (LOD) was 1.35x10-5 mol l-1 and the limit of quantification (LOQ) was 4.49x10-5 mol l-1. In the presence of the common excipients, such as glucose, lactose, talc, starch, magnesium stearate, sodium sulphite, titanium dioxide, polyethyleneglycol, polyvinylpirrolidone, mannitol and benzilic alcohol no interferences were observed. The analytical results obtained by applying the proposed method compare very favorably with those given by the United States Pharmacopeia standard procedure. Recoveries of diclofenac from various pharmaceutical preparations were within 95.9% to 103.3%, with standard deviations ranging from 0.2% to 1.8%.
Resumo:
This work presents an electroanalytical method for the determination of moxifloxacin (MOXI) in tablets by its interaction with Cu(II) ion and subsequent electrochemical reduction at hanging mercury drop electrode (HMDE). A well-defined reduction peak at -0.21 V vs. Ag/AgCl in Phosphate buffer 0.04 mol L-1 pH 8.0 was observed for the complex reduction MOXI-Cu(II), using square-wave voltammetry (SWV). Using a 10 s of accumulation time at -0.40 V was found a limit detection of 3.60x10-8 mol l-1. The obtained results have shown good agreement with those obtained by spectrophotometric method.
Resumo:
Two simple sensitive and cost-effective spectrophotometric methods are described for the determination of lansoprazole (LPZ) in bulk drug and in capsules using ceric ammonium sulphate (CAS), iron (II), orthophenanthroline and thiocyanate as reagents. In both methods, an acidic solution of lansoprazole is treated with a measured excess of CAS followed by the determination of unreacted oxidant by two procedures involving different reaction schemes. The first method involves the reduction of residual oxidant by a known amount of iron(II), and the unreacted iron(II) is complexed with orthophenanthroline at a raised pH, and the absorbance of the resulting complex measured at 510 nm (method A). In the second method, the unreacted CAS is reduced by excess of iron (II), and the resulting iron (III) is complexed with thiocyanate in the acid medium and the absorbance of the complex measured at 470 nm (method B). In both methods, the amount CAS reacted corresponds to the amount of LPZ. In method A, the absorbance is found to increase linearly with the concentration of LPZ where as in method B a linear decrease in absorbance occurs. The systems obey Beer's law for 2.5-30 and 2.5-25 µg mL-1 for method A and method B, respectively, and the corresponding molar absorptivity values are 8.1×10³ and 1.5×10(4) L mol-1cm-1 . The methods were successfully applied to the determination of LPZ in capsules and the results tallied well with the label claim. No interference was observed from the concomitant substances normally added to capsules.
Resumo:
Physico-chemical properties of 3-chloro-2-nitrobenzoates of Co(II), Ni(II) and Cu(II) were synthesized and studied. The complexes were obtained as mono- and dihydrates with a metal ion to ligand ratio of 1 : 2. All analysed 3-chloro-2-nitrobenzoates are polycrystalline compounds with colours depending on the central ions: pink for Co(II), green for Ni(II) and blue for Cu(II) complexes. Their thermal decomposition was studied in the range of 293 523 K, because it was found that on heating in air above 523 K 3-chloro-2-nitrobenzoates decompose explosively. Hydrated complexes lose crystallization water molecules in one step and anhydrous compounds are formed. The final products of their decomposition are the oxides of the respective transition metals. From the results it appears that during dehydration process no transformation of nitro group to nitrite takes place. The solubilities of analysed complexes in water at 293 K are of the order of 10-4 10-2 mol / dm³. The magnetic moment values of Co2+, Ni2+ and Cu2+ ions in 3-chloro-2-nitrobenzoates experimentally determined at 76 303 K change from 3.67µB to 4.61µB for Co(II) complex, from 2.15µB to 2.87µB for Ni(II) 3-chloro-2-nitrobenzoate and from 0.26µB to 1.39µB for Cu(II) complex. 3-Chloro-2-nitrobenzoates of Co(II) and Ni(II) follow the Curie-Weiss law. Complex of Cu(II) forms dimer.
Resumo:
Physico-chemical properties of 3,4-dimethoxybenzoates of Co(II), Cu(II), La(III) and Nd(III) were studied. The complexes were obtained as hydrated or anhydrous polycrystalline solids with a metal ion-ligand mole ratio of 1 : 2 for divalent ions and of 1 : 3 in the case of trivalent cations. Their colours depend on the kind of central ion: pink for Co(II) complex, blue for Cu(II), white for La(III) and violet for Nd(III) complexes. The carboxylate groups in these compounds are monodentate, bidentate bridging or chelating and tridentate ligands. Their thermal decomposition was studied in the range of 293-1173 K. Hydrated complexes lose crystallization water molecules in one step and form anhydrous compounds, that next decompose to the oxides of respective metals. 3,4 - Dimethoxybenzoates of Co(II) is directly decomposed to the appropriate oxide and that of Nd(III) is also ultimately decomposed to its oxide but with the intemediate formation of Nd2O2CO3.. The magnetic moment values of 3,4-dimethoxybenzoates determined in the range of 76-303 K change from 4.22 µB to 4.61 µB for Co(II) complex , from 0.49 µB to 1.17 µB for Cu(II) complex , and from 2.69 µB to 3.15 µB for Nd(III) complex.
Resumo:
Two sensitive spectrophotometric methods are described for the determination of simvastatin (SMT) in bulk drug and in tablets. The methods are based on the oxidation of SMT by a measured excess of cerium (IV) in acid medium followed by determination of unreacted oxidant by two different reaction schemes. In one procedure (method A), the residual cerium (IV) is reacted with a fixed concentration of ferroin and the increase in absorbance is measured at 510 nm. The second approach (method B) involves the reduction of the unreacted cerium (IV) with a fixed quantity of iron (II), and the resulting iron (III) is complexed with thiocyanate and the absorbance measured at 470 nm. In both methods, the amount of cerium (IV) reacted corresponds to SMT concentration. The experimental conditions for both methods were optimized. In method A, the absorbance is found to increase linearly with SMT concentration (r = 0.9995) whereas in method B, the same decreased (r = -0.9943). The systems obey Beer's law for 0.6-7.5 and 0.5-5.0 µg mL-1 for method A and method B, respectively. The calculated molar absorptivity values are 2.7 X 10(4) and 1.06 X 10(5) Lmol-1 cm-1, respectively; and the corresponding sandel sensitivity values are 0.0153 and 0.0039µg cm-2, respectively. The limit of detection (LOD) and quantification (LOQ) are reported for both methods. Intra-day and inter-day precision, and accuracy of the methods were established as per the current ICH guidelines. The methods were successfully applied to the determination of SMT in tablets and the results were statistically compared with those of the reference method by applying the Student's t-test and F-test. No interference was observed from the common excipients added to tablets. The accuracy and validity of the methods were further ascertained by performing recovery experiments via standard addition procedure.