119 resultados para Onda de superfície
Resumo:
Electrochemical methods applied to organic species transformation has been used as excellent synthesis tools. C-C bonds can be established, making possible polymer synthesis by both anodic and cathodic reactions of suitable monomer species at the working electrode surface. In this study, anodic procedure was used to electropolymerization of 2-mercaptobenzimidazole at reticulated glassy carbon (RGC) surface. 2-mercaptobenzimidazole presents ligand sites towards Hg2+, Ag+ and Cu2+ ions. The obtained material has been able to adsorb the above mentioned ions in aqueous solution.
Resumo:
The adsorption of H and S2- species on Pd (100) has been studied with ab initio, density-functional calculations and electrochemical methods. A cluster of five Pd atoms with a frozen geometry described the surface. The computational calculations were performed through the GAUSSIAN94 program, and the basis functions adapted to a pseudo-potential obtained by using the Generator Coordinate Method adapted to the this program. Using the cyclic voltammetry technique through a Model 283 Potentiostat/Galvanostat E.G.&G-PAR obtained the electrochemical results. The calculated chemisorption geometry has a Pd-H distance of 1.55Å, and the potential energy surface was calculated using the Becke3P86//(GCM/DFT/SBK) methodology. The adsorption of S2- ions on Pd surface obtained both through comparison between the experimental and theoretical results, at MP2 level, suggest a S2- absorption into the metallic cluster. The produced Pd-(S2-) system was show to be very stable under the employed experimental conditions. The paper has shows the powerful aid of computational methods to interpret adsorption experimental data.
Resumo:
The present experiment describes an easy procedure for obtaining SiO2/ZrO2 by reacting ZrOCl2 with SiO2 with the following characteristics: S BET = 500 m² g-1 and an average pore diameter of 6 nm. The material obtained presented 1.3 wt% ZrO2 content corresponding to 140 mumol g-1. The average density of ZrO2 onto SiO2/ZrO2 matrix is 2.8x10-11 mol cm-2. The adsorption isotherm for Cr(VI) showed a maximum of adsorption value (200 mumol g-1) at pH 2. The adsorption can be described by the reaction: =Zr(OH)2 + 2HCrO4- + 2H+ [(=Zr(OH2+)2) (HCrO4-)2]. Above the zero point of charge, i.e. pH > 5.5 due to the surface charge inversion, desorption of Cr(VI) occurs according to the reaction: [(=Zr(OH2+)2) (HCrO4-)2] + 6OH-
(=ZrO2)2- + 6H2O + 2CrO4(2-).
Resumo:
The concentrations of mercury in surface sediments (<63mum fraction) from Santos-Cubatão Estuary, located in State of São Paulo, southeast Brazil, were determined to obtain the level of contamination in this highly polluted area. Fifteen stations distributed though seven rivers were sampled (156 samples collected) from September 1997 to August 1998 (12 stations sampled monthly) and during March, June, September and December 1998 (three stations sampled quarterly). The levels of mercury varied from 0.10 to 6.77 ppm, with the index of geoaccumulation of the rivers varying between grades 1 and 3 (annual average). The Cubatão is the most polluted river and the main agent of Hg dispersion in the study area. Geochemical data revealed that Hg levels in surface from Santos-Cubatão Estuary at present are as elevated as in past (for instance, by comparison 1980's), when Cubatão city was known as one of the most polluted cities in the world.
Resumo:
The study of the reactions of organometallic complexes with the surfaces of inorganic oxides, zeolites and metals constitutes the basis of Surface Organometallic Chemistry (SOMC). The basic rules of organometallic chemistry are often valid when applied to surfaces and well-defined surface organometallic complexes can be obtained. These complexes can be used as heterogeneous catalysts or, by controlled reactions, can be transformed in other species useful for a given catalytic reaction. In some cases, these catalysts exhibit higher activity and/or selectivity than their analogous molecular complexes.
Resumo:
The theoretical aspects of square wave voltammetry were discussed. Reversible, irreversible and quase-reversible electrode reactions were analyzed and the correlations between parameters like frequency, period, square wave potential and amplitude were showed. In this way, diagnostic relationships allow to characterize the electrode process. The analytical applications were discussed in base of the increment in the analytical response (current) due to the characteristics of the developed equations and the unique mode of collecting the electrode response, i.e., the direct and reverse signals. Finally, recent advances in the basic theory, as the applications to the hydrodynamic electrode and the ultramicroelectrode were also analyzed, and the multiple pulses square wave voltammetry was also introduced.
Resumo:
The electrochemical behavior of paraquat on Pt, Au and carbon fiber ultramicroelectrodes were studied in laboratory samples by square wave voltammetry at high frequencies. The results showed two reversible peaks for paraquat reduction, in agreement to the literature data. The first peak was associated to the reduction of paraquat molecule in solution, with the further adsorption of the intermediate on the electrode surface. This adsorbed species undergoes to electroreduction in a reaction associated to the second voltammetric peak. The variation in pH and square wave parameters showed the best conditions to reduce paraquat as pH 5.0, frequency as high as 1000 s-1, scan increment of 2 mV and square wave amplitude of 50 mV. At such conditions, a variation of paraquat concentrations from 4.3 x 10-6 to 1.66 x 10-4 mol L-1 presented values for the detection limit equal to 3.9, 6.2 and 20.3 ppb on Pt, Au and carbon, respectively, at 1000 s-1. These values are quite below17 the allowed limit of paraquat in drinking water.
Resumo:
The anodic voltammetric behavior of 4-chlorophenol (4-CF) in aqueous solution has been studied on a Boron-doped diamond electrode using square wave voltammetry (SWV). After optimization of the experimental conditions, 4-CF was analyzed in pure and natural waters using a Britton-Robinson buffer with pH = 6.0 as the supporting electrolyte. Oxidation occurs at 0.80 V vs Ag/AgCl in a two-electron process controlled by adsorption of the species. The detection limits obtained were 6.4 µg L-1 in pure water and 21.5 µg L-1 for polluted water taken from a local creek, respectively. The combination of square wave voltammetry and diamond electrodes is an interesting and desirable alternative for analytical determinations.
Resumo:
In this work we present a theoretical model to investigate the scattering of Xe and Ne by a liquid squalane surface. The liquid surface is modeled as a grid of harmonic oscillators with frequencies adjusted to experimental vibration as frequencies of the liquid squalane and the atom-surface interaction potential is modeled by a Lennard-Jones function. The three dimensional description of the dynamics of the process which occurs at the gas-liquid interface is obtained by the classical trajectory method. The general characteristics of the dynamics of the scattering process are in good agreement with experimental data.
Resumo:
The aim of this work is to discuss some selected applications of square wave voltammetry published in the last five years. The applications focused here cover several electroanalytical fields such as: determination of pesticides; molecules with biological activity; metals and other environmental pollutants. Special attention is given to the work developed in the Grupo de Materiais Eletroquímicos e Métodos Eletroanalíticos - IQSC - USP concerning the utilization of square wave voltammetry, with different kinds of electrodes, for the determination of pesticides in natural waters and active principles in pharmaceutical formulations. The new methodology is simple, fast and sensitive when compared with the traditional ones such as chromatography and spectrophotometry. The satisfactory results obtained provide alternative procedures for the quality control of drugs and the monitoring of pesticides in natural environments.
Resumo:
This work reports the use of square wave voltammetry (SWV) to analyse the electrochemical reduction of dichlorvos (2, 2-dichlorovinyl-dimethylphosphate) in spiked pure and natural waters. SWV measurements were carried out in 0.5 mol L-1 Na2SO4 aqueous solutions at pH 5, prepared with water originated from three different sources, namely, one sample of purified water and others from two urban creeks in São Carlos County. In all cases, two reduction peaks were observed, at potentials of -0.15 and -1.05 V vs Ag/AgCl, with both current and potential being dependent on pesticide concentration. This allowed the calculation of the following detection limits: 1.0, 2.5 and 3.0x10-8 mol L-1 for purified, Gregorio creek and Monjolinho creek waters, respectively, in a working range between 2.0x10-7 and 1.4x10-6 mol L-1. Recovery measurements found values higher than 80% in all cases, for an added concentration of 4.0 x 10-7 mol L-1 of dichlorvos in each solution. All analytical experiments were performed in triplicate and showed a standard deviation always less than 3%.
Resumo:
A boron-doped diamond electrode is used for determination of Mn(II) in atmospheric particulate matter by square wave cathodic stripping voltammetry. The analytical curve was linear for Mn(II) concentrations between 5.0 and 37.5 µg L-1, with quantification limit of 3.6 µg L-1. The precision was evaluated by the relative standard deviation, with values between 5.1% and 9.3%. The electrode is free of adsorption, minimizing memory effects. Samples collected in the workplace atmosphere of a foundry had Mn(II) concentrations between 0.4 and 4 µg m-3. No significant differences were observed between the proposed method and inductively coupled plasma optical emission spectroscopy.
Resumo:
A square wave voltammetric method is described for the determination of acetaldehyde using the derivatization reaction with hydrazine sulphate, based on the reduction of hydrazone generated as a product that exhibits a single well-defined peak at -1.19V in acetate buffer at pH 5. Calibration graphs were obtained from 1.0 x 10-6 mol L-1 to 10 x 10-6 mol L-1 of acetaldehyde, using a reaction time of 8 min and a hidrazine concentration of 0.02 mol L-1. The detection limit was 2.38 x 10-7 mol L-1. The method was applied satisfactorily to the determination of total aldehyde in fuel ethanol samples without any pre-treatment.
Resumo:
In this work a simple and versatile procedure is described for treating water samples using small polypropylene (PP) vials (4 mL) for determining heavy metals by square wave voltammetry (SWV). This procedure involves treatment with nitric acid (0.2 mol L-1) and boiling in a water-bath (~ 100 ºC). This process is completed after one hour and allows the pretreatment of several samples simultaneously. The accuracy was estimated using addition/recovery studies and certified water sample analysis, yielding an agreement near to 100%.
Resumo:
This paper reports the development of multiple square wave voltammetry and the possibilities of its use for electroanalytical determinations of organic and inorganic compounds with the improvement of the signal-to-noise ratios and detection limits 2-3 orders of magnitude lower than those obtained with conventional square wave voltammetry. The theoretical aspects and analytical applications were demonstrated as an increased analytical response (current) and application of different pulse modes for different redox processes. Preliminary results obtained for several redox systems using different electrode surfaces are shown, demonstrating also that MSWV represents an excellent alternative for the determination of ultra-traces of organic and inorganic compounds.